Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
The Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, Scotland, UK.
Science. 2018 Nov 2;362(6414):577-580. doi: 10.1126/science.aap9072.
Identifying the animal origins of RNA viruses requires years of field and laboratory studies that stall responses to emerging infectious diseases. Using large genomic and ecological datasets, we demonstrate that animal reservoirs and the existence and identity of arthropod vectors can be predicted directly from viral genome sequences via machine learning. We illustrate the ability of these models to predict the epidemiology of diverse viruses across most human-infective families of single-stranded RNA viruses, including 69 viruses with previously elusive or never-investigated reservoirs or vectors. Models such as these, which capitalize on the proliferation of low-cost genomic sequencing, can narrow the time lag between virus discovery and targeted research, surveillance, and management.
确定 RNA 病毒的动物起源需要多年的实地和实验室研究,这会延误对新发传染病的应对。我们利用大型基因组和生态数据集,通过机器学习证明可以直接从病毒基因组序列中预测动物宿主以及节肢动物媒介的存在和身份。我们展示了这些模型预测多种病毒在单链 RNA 病毒的大多数人类感染家族中的流行病学的能力,包括 69 种以前难以捉摸或从未研究过的宿主或媒介的病毒。这些模型利用低成本基因组测序的普及,可以缩小病毒发现与有针对性的研究、监测和管理之间的时间滞后。