Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109.
Genetics. 2019 Feb;211(2):549-562. doi: 10.1534/genetics.118.301525. Epub 2018 Dec 28.
Epigenomic signatures from histone marks and transcription factor (TF)-binding sites have been used to annotate putative gene regulatory regions. However, a direct comparison of these diverse annotations is missing, and it is unclear how genetic variation within these annotations affects gene expression. Here, we compare five widely used annotations of active regulatory elements that represent high densities of one or more relevant epigenomic marks-"super" and "typical" (nonsuper) enhancers, stretch enhancers, high-occupancy target (HOT) regions, and broad domains-across the four matched human cell types for which they are available. We observe that stretch and super enhancers cover cell type-specific enhancer "chromatin states," whereas HOT regions and broad domains comprise more ubiquitous promoter states. Expression quantitative trait loci (eQTL) in stretch enhancers have significantly smaller effect sizes compared to those in HOT regions. Strikingly, chromatin accessibility QTL in stretch enhancers have significantly larger effect sizes compared to those in HOT regions. These observations suggest that stretch enhancers could harbor genetically primed chromatin to enable changes in TF binding, possibly to drive cell type-specific responses to environmental stimuli. Our results suggest that current eQTL studies are relatively underpowered or could lack the appropriate environmental context to detect genetic effects in the most cell type-specific "regulatory annotations," which likely contributes to infrequent colocalization of eQTL with genome-wide association study signals.
组蛋白标记和转录因子(TF)结合位点的表观基因组特征已被用于注释假定的基因调控区域。然而,这些不同注释之间的直接比较尚缺乏,并且不清楚这些注释中的遗传变异如何影响基因表达。在这里,我们比较了五种广泛使用的活性调控元件注释,这些注释代表了一个或多个相关表观基因组标记的高密度-"超级"和"典型"(非超级)增强子、伸展增强子、高占据靶(HOT)区域和广泛的结构域-在可用的四个匹配的人类细胞类型中。我们观察到伸展和超级增强子覆盖了细胞类型特异性增强子"染色质状态",而 HOT 区域和广泛的结构域包含了更普遍的启动子状态。伸展增强子中的表达数量性状基因座(eQTL)与 HOT 区域中的 eQTL 相比,效应大小显著较小。引人注目的是,伸展增强子中的染色质可及性 QTL 与 HOT 区域中的 QTL 相比,效应大小显著较大。这些观察结果表明,伸展增强子可能含有遗传上启动的染色质,以实现 TF 结合的变化,可能驱动对环境刺激的细胞类型特异性反应。我们的结果表明,目前的 eQTL 研究相对缺乏效力,或者可能缺乏适当的环境背景来检测最具细胞类型特异性的"调控注释"中的遗传效应,这可能导致 eQTL 与全基因组关联研究信号的罕见共定位。