Suppr超能文献

人类调控注释的细胞特异性及其对基因表达的遗传影响。

Cell Specificity of Human Regulatory Annotations and Their Genetic Effects on Gene Expression.

机构信息

Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109.

出版信息

Genetics. 2019 Feb;211(2):549-562. doi: 10.1534/genetics.118.301525. Epub 2018 Dec 28.

Abstract

Epigenomic signatures from histone marks and transcription factor (TF)-binding sites have been used to annotate putative gene regulatory regions. However, a direct comparison of these diverse annotations is missing, and it is unclear how genetic variation within these annotations affects gene expression. Here, we compare five widely used annotations of active regulatory elements that represent high densities of one or more relevant epigenomic marks-"super" and "typical" (nonsuper) enhancers, stretch enhancers, high-occupancy target (HOT) regions, and broad domains-across the four matched human cell types for which they are available. We observe that stretch and super enhancers cover cell type-specific enhancer "chromatin states," whereas HOT regions and broad domains comprise more ubiquitous promoter states. Expression quantitative trait loci (eQTL) in stretch enhancers have significantly smaller effect sizes compared to those in HOT regions. Strikingly, chromatin accessibility QTL in stretch enhancers have significantly larger effect sizes compared to those in HOT regions. These observations suggest that stretch enhancers could harbor genetically primed chromatin to enable changes in TF binding, possibly to drive cell type-specific responses to environmental stimuli. Our results suggest that current eQTL studies are relatively underpowered or could lack the appropriate environmental context to detect genetic effects in the most cell type-specific "regulatory annotations," which likely contributes to infrequent colocalization of eQTL with genome-wide association study signals.

摘要

组蛋白标记和转录因子(TF)结合位点的表观基因组特征已被用于注释假定的基因调控区域。然而,这些不同注释之间的直接比较尚缺乏,并且不清楚这些注释中的遗传变异如何影响基因表达。在这里,我们比较了五种广泛使用的活性调控元件注释,这些注释代表了一个或多个相关表观基因组标记的高密度-"超级"和"典型"(非超级)增强子、伸展增强子、高占据靶(HOT)区域和广泛的结构域-在可用的四个匹配的人类细胞类型中。我们观察到伸展和超级增强子覆盖了细胞类型特异性增强子"染色质状态",而 HOT 区域和广泛的结构域包含了更普遍的启动子状态。伸展增强子中的表达数量性状基因座(eQTL)与 HOT 区域中的 eQTL 相比,效应大小显著较小。引人注目的是,伸展增强子中的染色质可及性 QTL 与 HOT 区域中的 QTL 相比,效应大小显著较大。这些观察结果表明,伸展增强子可能含有遗传上启动的染色质,以实现 TF 结合的变化,可能驱动对环境刺激的细胞类型特异性反应。我们的结果表明,目前的 eQTL 研究相对缺乏效力,或者可能缺乏适当的环境背景来检测最具细胞类型特异性的"调控注释"中的遗传效应,这可能导致 eQTL 与全基因组关联研究信号的罕见共定位。

相似文献

1
Cell Specificity of Human Regulatory Annotations and Their Genetic Effects on Gene Expression.
Genetics. 2019 Feb;211(2):549-562. doi: 10.1534/genetics.118.301525. Epub 2018 Dec 28.
2
Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers.
Epigenetics. 2018;13(9):910-922. doi: 10.1080/15592294.2018.1514231. Epub 2018 Oct 11.
4
Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306. doi: 10.1073/pnas.1621192114. Epub 2017 Feb 13.
5
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17921-6. doi: 10.1073/pnas.1317023110. Epub 2013 Oct 14.
6
Enhancer variants associated with Alzheimer's disease affect gene expression via chromatin looping.
BMC Med Genomics. 2019 Sep 9;12(1):128. doi: 10.1186/s12920-019-0574-8.
7
Transcription factor and chromatin features predict genes associated with eQTLs.
Nucleic Acids Res. 2013 Feb 1;41(3):1450-63. doi: 10.1093/nar/gks1339. Epub 2012 Dec 28.
9
Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.
PLoS Genet. 2013;9(8):e1003649. doi: 10.1371/journal.pgen.1003649. Epub 2013 Aug 1.
10
Genetic effects on liver chromatin accessibility identify disease regulatory variants.
Am J Hum Genet. 2021 Jul 1;108(7):1169-1189. doi: 10.1016/j.ajhg.2021.05.001. Epub 2021 May 25.

引用本文的文献

1
Inferring causal cell types of human diseases and risk variants from candidate regulatory elements.
medRxiv. 2024 May 18:2024.05.17.24307556. doi: 10.1101/2024.05.17.24307556.
3
A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids.
Am J Hum Genet. 2022 Aug 4;109(8):1366-1387. doi: 10.1016/j.ajhg.2022.06.012.
5
Multi-omic profiling of pituitary thyrotropic cells and progenitors.
BMC Biol. 2021 Apr 15;19(1):76. doi: 10.1186/s12915-021-01009-0.
6
A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures.
Diabetes. 2021 Jul;70(7):1581-1591. doi: 10.2337/db20-1087. Epub 2021 Apr 13.
7
Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research.
Front Endocrinol (Lausanne). 2020 Oct 8;11:576632. doi: 10.3389/fendo.2020.576632. eCollection 2020.
8
Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D.
Nat Commun. 2020 Sep 30;11(1):4912. doi: 10.1038/s41467-020-18581-8.
9
Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements.
Nat Microbiol. 2020 Nov;5(11):1374-1389. doi: 10.1038/s41564-020-0760-7. Epub 2020 Jul 27.

本文引用的文献

2
Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response.
Nat Genet. 2018 Mar;50(3):424-431. doi: 10.1038/s41588-018-0046-7. Epub 2018 Jan 29.
3
The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of and Transcription Factors.
Genetics. 2018 Mar;208(3):937-949. doi: 10.1534/genetics.117.300657. Epub 2017 Dec 28.
5
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
6
Fine-mapping inflammatory bowel disease loci to single-variant resolution.
Nature. 2017 Jul 13;547(7662):173-178. doi: 10.1038/nature22969. Epub 2017 Jun 28.
8
Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells.
Mol Cell. 2017 Apr 20;66(2):285-299.e5. doi: 10.1016/j.molcel.2017.03.007. Epub 2017 Apr 13.
9
Functional Architectures of Local and Distal Regulation of Gene Expression in Multiple Human Tissues.
Am J Hum Genet. 2017 Apr 6;100(4):605-616. doi: 10.1016/j.ajhg.2017.03.002. Epub 2017 Mar 23.
10
Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306. doi: 10.1073/pnas.1621192114. Epub 2017 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验