Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129317. doi: 10.1016/j.bbagen.2019.03.003. Epub 2019 Mar 6.
Proteins, which comprise one of the major classes of biomolecules that constitute a cell, interact with other cellular factors during both their biogenesis and functional states. Studying not only static but also transient interactions of proteins is important to understand their physiological roles and regulation mechanisms. However, only a limited number of methods are available to analyze the dynamic behaviors of proteins at the molecular level in a living cell. The site-directed in vivo photo-cross-linking approach is an elegant technique to capture protein interactions with high spatial resolution in a living cell.
Here, we review the in vivo photo-cross-linking approach including its recent applications and the potential problems to be considered. We also introduce a new in vivo photo-cross-linking-based technique (PiXie) to study protein dynamics with high spatiotemporal resolution.
In vivo photo-cross-linking enables us to capture weak/transient protein interactions with high spatial resolution, and allows for identification of interacting factors. Moreover, the PiXie approach can be used to monitor rapid folding/assembly processes of proteins in living cells.
In vivo photo-cross-linking is a simple method that has been used to analyze the dynamic interactions of many cellular proteins. Originally developed in Escherichia coli, this system has been extended to studies in various organisms, making it a fundamental technique for investigating dynamic protein interactions in many cellular processes. This article is part of a Special issue entitled "Novel major techniques for visualizing 'live' protein molecules" edited by Dr. Daisuke Kohda.
蛋白质是构成细胞的主要生物分子之一,在其生物发生和功能状态下与其他细胞因子相互作用。研究蛋白质的不仅是静态的,还有瞬态相互作用对于理解它们的生理作用和调节机制非常重要。然而,只有有限的方法可用于分析活细胞中蛋白质在分子水平上的动态行为。定点活体光交联方法是一种在活细胞中以高空间分辨率捕获蛋白质相互作用的优雅技术。
本文回顾了活体光交联方法,包括其最近的应用和需要考虑的潜在问题。我们还介绍了一种新的基于活体光交联的技术(PiXie),用于研究活细胞中具有高时空分辨率的蛋白质动力学。
活体光交联使我们能够以高空间分辨率捕获弱/瞬时蛋白质相互作用,并允许鉴定相互作用的因素。此外,PiXie 方法可用于监测活细胞中蛋白质的快速折叠/组装过程。
活体光交联是一种简单的方法,已用于分析许多细胞蛋白质的动态相互作用。该系统最初在大肠杆菌中开发,现已扩展到各种生物体的研究中,使其成为研究许多细胞过程中动态蛋白质相互作用的基础技术。本文是由 Daisuke Kohda 博士编辑的“用于可视化 '活体' 蛋白质分子的新型主要技术”特刊的一部分。