Suppr超能文献

Memo1 介导的放射状胶质细胞平铺促进大脑皮层发育。

Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development.

机构信息

UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.

UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.

出版信息

Neuron. 2019 Sep 4;103(5):836-852.e5. doi: 10.1016/j.neuron.2019.05.049. Epub 2019 Jul 2.

Abstract

Polarized, non-overlapping, regularly spaced, tiled organization of radial glial cells (RGCs) serves as a framework to generate and organize cortical neuronal columns, layers, and circuitry. Here, we show that mediator of cell motility 1 (Memo1) is a critical determinant of radial glial tiling during neocortical development. Memo1 deletion or knockdown leads to hyperbranching of RGC basal processes and disrupted RGC tiling, resulting in aberrant radial unit assembly and neuronal layering. Memo1 regulates microtubule (MT) stability necessary for RGC tiling. Memo1 deficiency leads to disrupted MT minus-end CAMSAP2 distribution, initiation of aberrant MT branching, and altered polarized trafficking of key basal domain proteins such as GPR56, and thus aberrant RGC tiling. These findings identify Memo1 as a mediator of RGC scaffold tiling, necessary to generate and organize neurons into functional ensembles in the developing cerebral cortex.

摘要

极化、不重叠、规则间隔、平铺排列的放射状胶质细胞(RGC)组织作为生成和组织皮层神经元柱、层和回路的框架。在这里,我们表明,细胞运动介质 1(Memo1)是新皮层发育过程中放射状胶质细胞平铺的关键决定因素。Memo1 的缺失或敲低导致 RGC 基底过程的过度分支和 RGC 平铺的破坏,导致异常的放射状单位组装和神经元分层。Memo1 调节微管(MT)稳定性,这对于 RGC 平铺是必需的。Memo1 缺乏导致 MT 负端 CAMSAP2 分布中断,异常 MT 分支的开始,以及关键基底域蛋白(如 GPR56)的极化运输改变,从而导致 RGC 平铺异常。这些发现表明 Memo1 是 RGC 支架平铺的介质,对于在发育中的大脑皮层中将神经元生成并组织成功能单元是必需的。

相似文献

1
Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development.
Neuron. 2019 Sep 4;103(5):836-852.e5. doi: 10.1016/j.neuron.2019.05.049. Epub 2019 Jul 2.
2
CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202003151. Epub 2021 May 21.
3
Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5058-67. doi: 10.1073/pnas.1506377112. Epub 2015 Aug 25.
5
Memo1 Tiles the Radial Glial Cell Grid.
Neuron. 2019 Sep 4;103(5):750-752. doi: 10.1016/j.neuron.2019.08.021.
6
Reelin Induces Branching of Neurons and Radial Glial Cells during Corticogenesis.
Cereb Cortex. 2015 Oct;25(10):3640-53. doi: 10.1093/cercor/bhu216. Epub 2014 Sep 21.
7
Crucial roles of the Arp2/3 complex during mammalian corticogenesis.
Development. 2016 Aug 1;143(15):2741-52. doi: 10.1242/dev.130542. Epub 2016 Jul 6.
10
Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex.
Cereb Cortex. 2017 Feb 1;27(2):1253-1269. doi: 10.1093/cercor/bhv341.

引用本文的文献

1
Prdm16 regulates the postnatal fate of embryonic radial glia via Vcam1-dependent mechanisms.
Nat Commun. 2025 Jul 19;16(1):6659. doi: 10.1038/s41467-025-60895-y.
2
Metabolic Effects of the Cancer Metastasis Modulator MEMO1.
Metabolites. 2025 Apr 17;15(4):277. doi: 10.3390/metabo15040277.
3
Early-life growth and cellular heterogeneity in the short-lived African turquoise killifish telencephalon.
Biol Open. 2025 Apr 15;14(4). doi: 10.1242/bio.061984. Epub 2025 Apr 22.
5
Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution.
Nat Methods. 2025 Feb;22(2):358-370. doi: 10.1038/s41592-024-02555-5. Epub 2024 Dec 9.
6
3D CNN for neuropsychiatry: Predicting Autism with interpretable Deep Learning applied to minimally preprocessed structural MRI data.
PLoS One. 2024 Oct 21;19(10):e0276832. doi: 10.1371/journal.pone.0276832. eCollection 2024.
7
Radial glia progenitor polarity in health and disease.
Front Cell Dev Biol. 2024 Oct 2;12:1478283. doi: 10.3389/fcell.2024.1478283. eCollection 2024.
8
Primary cilia signaling in astrocytes mediates development and regional-specific functional specification.
Nat Neurosci. 2024 Sep;27(9):1708-1720. doi: 10.1038/s41593-024-01726-z. Epub 2024 Aug 5.
9
Brain cell-type shifts in Alzheimer's disease, autism, and schizophrenia interrogated using methylomics and genetics.
Sci Adv. 2024 May 24;10(21):eadn7655. doi: 10.1126/sciadv.adn7655. Epub 2024 May 23.
10
MEMO1 binds iron and modulates iron homeostasis in cancer cells.
Elife. 2024 Apr 19;13:e86354. doi: 10.7554/eLife.86354.

本文引用的文献

2
Coming into Focus: Mechanisms of Microtubule Minus-End Organization.
Trends Cell Biol. 2018 Jul;28(7):574-588. doi: 10.1016/j.tcb.2018.02.011. Epub 2018 Mar 20.
4
Lattice system of functionally distinct cell types in the neocortex.
Science. 2017 Nov 3;358(6363):610-615. doi: 10.1126/science.aam6125.
5
APC sets the Wnt tone necessary for cerebral cortical progenitor development.
Genes Dev. 2017 Aug 15;31(16):1679-1692. doi: 10.1101/gad.302679.117. Epub 2017 Sep 15.
6
Microtubule organization, dynamics and functions in differentiated cells.
Development. 2017 Sep 1;144(17):3012-3021. doi: 10.1242/dev.153171.
7
Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells.
Neuron. 2017 May 3;94(3):517-533.e3. doi: 10.1016/j.neuron.2017.04.012.
8
Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex.
Nat Cell Biol. 2017 May;19(5):480-492. doi: 10.1038/ncb3511. Epub 2017 Apr 24.
9
Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture.
Neuron. 2016 Oct 19;92(2):435-448. doi: 10.1016/j.neuron.2016.09.020. Epub 2016 Sep 29.
10
Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.
Cell. 2016 Aug 25;166(5):1147-1162.e15. doi: 10.1016/j.cell.2016.07.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验