Suppr超能文献

后眶皮层的空间感。

A sense of space in postrhinal cortex.

机构信息

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

出版信息

Science. 2019 Jul 12;365(6449). doi: 10.1126/science.aax4192.

Abstract

A topographic representation of local space is critical for navigation and spatial memory. In humans, topographic spatial learning relies upon the parahippocampal cortex, damage to which renders patients unable to navigate their surroundings or develop new spatial representations. Stable spatial signals have not yet been observed in its rat homolog, the postrhinal cortex. We recorded from single neurons in the rat postrhinal cortex whose firing reflects an animal's egocentric relationship to the geometric center of the local environment, as well as the animal's head direction in an allocentric reference frame. Combining these firing correlates revealed a population code for a stable topographic map of local space. This may form the basis for higher-order spatial maps such as those seen in the hippocampus and entorhinal cortex.

摘要

地形空间表示对于导航和空间记忆至关重要。在人类中,地形空间学习依赖于海马旁皮质,该皮质的损伤会使患者无法在周围环境中导航或形成新的空间表示。其啮齿动物同源物后穹窿皮质中尚未观察到稳定的空间信号。我们记录了大鼠后穹窿皮质中单个神经元的放电活动,这些神经元的放电活动反映了动物相对于局部环境几何中心的自我中心关系,以及动物在无参照坐标系中的头方向。将这些放电相关性结合起来揭示了局部空间稳定地形图的群体编码。这可能构成了更高阶空间地图(如海马体和内嗅皮质中的地图)的基础。

相似文献

1
A sense of space in postrhinal cortex.
Science. 2019 Jul 12;365(6449). doi: 10.1126/science.aax4192.
3
Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries.
Curr Biol. 2019 Aug 19;29(16):2751-2757.e4. doi: 10.1016/j.cub.2019.07.007. Epub 2019 Aug 1.
4
Distinct codes for environment structure and symmetry in postrhinal and retrosplenial cortices.
Nat Commun. 2024 Sep 13;15(1):8025. doi: 10.1038/s41467-024-52315-4.
6
Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal.
Science. 2015 Feb 20;347(6224):870-874. doi: 10.1126/science.1259591. Epub 2015 Feb 5.
7
Egocentric coding of external items in the lateral entorhinal cortex.
Science. 2018 Nov 23;362(6417):945-949. doi: 10.1126/science.aau4940.
9
Home, head direction stability, and grid cell distortion.
J Neurophysiol. 2020 Apr 1;123(4):1392-1406. doi: 10.1152/jn.00518.2019. Epub 2020 Feb 26.
10
A neural code for egocentric spatial maps in the human medial temporal lobe.
Neuron. 2021 Sep 1;109(17):2781-2796.e10. doi: 10.1016/j.neuron.2021.06.019. Epub 2021 Jul 14.

引用本文的文献

1
Cortical dissociation of spatial reference frames during place navigation.
bioRxiv. 2025 Jun 29:2025.06.25.661569. doi: 10.1101/2025.06.25.661569.
2
A hippocampal navigation model through hierarchical memory organization.
Cogn Neurodyn. 2025 Dec;19(1):103. doi: 10.1007/s11571-025-10254-w. Epub 2025 Jun 26.
3
Translational differentiation of vertically displaced surfaces by grid cells.
Curr Biol. 2025 May 19;35(10):2379-2390.e5. doi: 10.1016/j.cub.2025.04.036. Epub 2025 May 5.
4
A Hippocampal-Parietal Network for Reference Frame Coordination.
J Neurosci. 2025 Apr 23;45(17):e1782242025. doi: 10.1523/JNEUROSCI.1782-24.2025.
5
Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex.
Nat Commun. 2025 Jan 3;16(1):356. doi: 10.1038/s41467-024-54699-9.
6
Vector coding and place coding in hippocampus share a common directional signal.
Nat Commun. 2024 Dec 5;15(1):10630. doi: 10.1038/s41467-024-54935-2.
7
Building egocentric models of local space from retinal input.
Curr Biol. 2024 Dec 2;34(23):R1185-R1202. doi: 10.1016/j.cub.2024.10.057.
8
Distinct cortical spatial representations learned along disparate visual pathways.
bioRxiv. 2024 Oct 12:2024.10.10.617687. doi: 10.1101/2024.10.10.617687.
9
Neural circuits for goal-directed navigation across species.
Trends Neurosci. 2024 Nov;47(11):904-917. doi: 10.1016/j.tins.2024.09.005. Epub 2024 Oct 10.
10
Distinct codes for environment structure and symmetry in postrhinal and retrosplenial cortices.
Nat Commun. 2024 Sep 13;15(1):8025. doi: 10.1038/s41467-024-52315-4.

本文引用的文献

1
Egocentric coding of external items in the lateral entorhinal cortex.
Science. 2018 Nov 23;362(6417):945-949. doi: 10.1126/science.aau4940.
4
A neural-level model of spatial memory and imagery.
Elife. 2018 Sep 4;7:e33752. doi: 10.7554/eLife.33752.
5
Transformation of the head-direction signal into a spatial code.
Nat Commun. 2017 Nov 24;8(1):1752. doi: 10.1038/s41467-017-01908-3.
6
A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex.
Neuron. 2017 Apr 19;94(2):375-387.e7. doi: 10.1016/j.neuron.2017.03.025. Epub 2017 Apr 6.
7
Framing of grid cells within and beyond navigation boundaries.
Elife. 2017 Jan 13;6:e21354. doi: 10.7554/eLife.21354.
8
Parahippocampal and retrosplenial connections of rat posterior parietal cortex.
Hippocampus. 2017 Apr;27(4):335-358. doi: 10.1002/hipo.22701. Epub 2017 Jan 16.
9
Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents.
Hippocampus. 2016 Sep;26(9):1189-212. doi: 10.1002/hipo.22603. Epub 2016 May 24.
10
Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents.
Hippocampus. 2016 Sep;26(9):1213-30. doi: 10.1002/hipo.22600. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验