Suppr超能文献

一种基于模型的方法,用于最小化外置驱动系统中的反射电机惯性:在下肢外骨骼设计中的应用

A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.

作者信息

Anderson Anthony, Richburg Chris, Czerniecki Joseph, Aubin Patrick

出版信息

IEEE Int Conf Rehabil Robot. 2019 Jun;2019:360-367. doi: 10.1109/ICORR.2019.8779452.

Abstract

The research and development of wearable robotic devices has been accelerated by off-board control and actuation systems. While off-board robotic actuation systems provide many benefits, the impedance at the robotic joint is often high. High joint impedance is undesirable for wearable devices like exoskeletons, as the user is unable to move their joint without actively controlled motion from the motors. We propose that the impedance can be reduced substantially in off-board robotic actuation systems by minimizing the reflected inertia from the motor. We have developed a model and optimization-based methodology for selecting a motor and set of mechanical design parameters that minimize reflected inertia. This methodology was implemented in the design of an off-board knee exoskeleton as a case study. A grey-box model was developed that incorporates biomechanical knee trajectories, an experimentally determined human-device interface stiffness model, Bowden cable stiffness and friction, and a motor model. A constrained optimization routine was developed that uses the model and a library of157 candidate servo motors to select the actuator and mechanical design parameters that minimize reflected inertia at the exoskeleton joint. We found that S6 of the motors were able to carry out the necessary torque-velocity trajectories to achieve the prescribed exoskeleton joint torques and limb motions. The optimal motor was the Kollmorgen C133A-one of the largest in the library of candidate servo motors and required a 2.25 cm actuator pulley at the knee joint and a 17.5 cm cable sheave at the motor output. This methodology can be adapted by exoskeleton designers to develop more backdriveable exoskeletons and improve experimental capabilities. All code developed for the case study is open-source and freely available online.

摘要

体外控制和驱动系统加速了可穿戴机器人设备的研发。虽然体外机器人驱动系统有诸多优点,但机器人关节处的阻抗往往较高。对于外骨骼等可穿戴设备而言,高关节阻抗是不理想的,因为用户在没有电机主动控制运动的情况下无法移动其关节。我们提出,通过最小化电机的反射惯性,可在体外机器人驱动系统中大幅降低阻抗。我们开发了一种基于模型和优化的方法,用于选择能使反射惯性最小化的电机和一组机械设计参数。作为案例研究,该方法在体外膝关节外骨骼的设计中得到了应用。开发了一个灰箱模型,该模型纳入了生物力学膝关节轨迹、通过实验确定 的人机界面刚度模型、鲍登缆绳刚度和摩擦力以及电机模型。开发了一个约束优化程序,该程序使用该模型和一个包含157个候选伺服电机的库来选择能使外骨骼关节处反射惯性最小化的致动器和机械设计参数。我们发现,有6种电机能够执行必要的扭矩 - 速度轨迹,以实现规定的外骨骼关节扭矩和肢体运动。最优电机是科尔摩根C133A——候选伺服电机库中最大的电机之一,在膝关节处需要一个2.25厘米的致动器皮带轮,在电机输出端需要一个17.5厘米的缆绳滑轮。外骨骼设计师可以采用这种方法来开发更易于回驱的外骨骼,并提高实验能力。为该案例研究开发的所有代码都是开源的,可在网上免费获取。

相似文献

1
2
Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1387-1394. doi: 10.1109/ICORR.2017.8009442.
3
Novel swing-assist un-motorized exoskeletons for gait training.
J Neuroeng Rehabil. 2009 Jul 3;6:24. doi: 10.1186/1743-0003-6-24.
4
Methodology for Selecting the Appropriate Electric Motor for Robotic Modular Systems for Lower Extremities.
Healthcare (Basel). 2022 Oct 17;10(10):2054. doi: 10.3390/healthcare10102054.
5
Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:567-572. doi: 10.1109/ICORR.2017.8009308.
6
Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation.
IEEE Trans Biomed Eng. 2021 Feb;68(2):535-544. doi: 10.1109/TBME.2020.3006787. Epub 2021 Jan 20.
9
Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:331-336. doi: 10.1109/ICORR.2019.8779492.
10
Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4436-4439. doi: 10.1109/EMBC.2019.8857502.

引用本文的文献

1
Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator.
IEEE Trans Med Robot Bionics. 2023 Jun 30;5(3):741-752. doi: 10.1109/TMRB.2023.3291015.

本文引用的文献

1
Design of a lightweight, tethered, torque-controlled knee exoskeleton.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1646-1653. doi: 10.1109/ICORR.2017.8009484.
3
Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):119-130. doi: 10.1109/TNSRE.2016.2523250. Epub 2016 Jan 28.
4
A universal ankle-foot prosthesis emulator for human locomotion experiments.
J Biomech Eng. 2014 Mar;136(3):035002. doi: 10.1115/1.4026225.
5
An electrohydraulic knee-torque controller for a prosthesis simulator.
J Biomech Eng. 1977 Feb 1;99(1):3-8. doi: 10.1115/1.3426266. Epub 2010 Oct 21.
6
Evaluation of a powered ankle-foot prosthetic system during walking.
Arch Phys Med Rehabil. 2012 Nov;93(11):1911-8. doi: 10.1016/j.apmr.2012.06.009. Epub 2012 Jun 22.
7
Robotic orthosis lokomat: a rehabilitation and research tool.
Neuromodulation. 2003 Apr;6(2):108-15. doi: 10.1046/j.1525-1403.2003.03017.x. Epub 2003 Jun 16.
8
Learning to walk with a robotic ankle exoskeleton.
J Biomech. 2007;40(12):2636-44. doi: 10.1016/j.jbiomech.2006.12.006. Epub 2007 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验