Suppr超能文献

体外抗药性的演变揭示了青蒿素在……中的作用机制。

Evolution of resistance in vitro reveals mechanisms of artemisinin activity in .

作者信息

Rosenberg Alex, Luth Madeline R, Winzeler Elizabeth A, Behnke Michael, Sibley L David

机构信息

Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.

Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26881-26891. doi: 10.1073/pnas.1914732116. Epub 2019 Dec 5.

Abstract

Artemisinins are effective against a variety of parasites and provide the first line of treatment for malaria. Laboratory studies have identified several mechanisms for artemisinin resistance in , including mutations in Kelch13 that are associated with delayed clearance in some clinical isolates, although other mechanisms are likely involved. To explore other potential mechanisms of resistance in parasites, we took advantage of the genetic tractability of , a related parasite that shows moderate sensitivity to artemisinin. Resistant populations of were selected by culture in increasing concentrations and whole-genome sequencing identified several nonconservative point mutations that emerged in the population and were fixed over time. Genome editing using CRISPR/Cas9 was used to introduce point mutations conferring amino acid changes in a serine protease homologous to DegP and a serine/threonine protein kinase of unknown function. Single and double mutations conferred a competitive advantage over wild-type parasites in the presence of drug, despite not changing EC values. Additionally, the evolved resistant lines showed dramatic amplification of the mitochondria genome, including genes encoding cytochrome and cytochrome oxidase I. Prior studies in yeast and mammalian tumor cells implicate the mitochondrion as a target of artemisinins, and treatment of wild-type parasites with high concentrations of drug decreased mitochondrial membrane potential, a phenotype that was stably altered in the resistant parasites. These findings extend the repertoire of mutations associated with artemisinin resistance and suggest that the mitochondrion may be an important target of inhibition of resistance in .

摘要

青蒿素对多种寄生虫有效,是疟疾治疗的一线用药。实验室研究已确定了疟原虫对青蒿素耐药的几种机制,包括 Kelch13 基因的突变,该突变与某些临床分离株中疟原虫清除延迟有关,不过可能还涉及其他机制。为探索疟原虫其他潜在的耐药机制,我们利用了伯氏疟原虫的遗传易处理性,它是一种对青蒿素中度敏感的相关疟原虫。通过在浓度递增的培养基中培养来筛选伯氏疟原虫的耐药群体,全基因组测序确定了群体中出现并随时间固定下来的几个非保守点突变。使用 CRISPR/Cas9 进行基因组编辑,以在与 DegP 同源的丝氨酸蛋白酶和一个功能未知的丝氨酸/苏氨酸蛋白激酶中引入导致氨基酸变化的点突变。尽管单突变和双突变未改变半数有效浓度(EC)值,但在有药物存在的情况下,它们赋予了相对于野生型疟原虫的竞争优势。此外,进化出的耐药株显示线粒体基因组显著扩增,包括编码细胞色素 和细胞色素氧化酶 I 的基因。先前在酵母和哺乳动物肿瘤细胞中的研究表明线粒体是青蒿素的作用靶点,用高浓度药物处理野生型疟原虫会降低线粒体膜电位,而这种表型在耐药疟原虫中稳定改变。这些发现扩展了与青蒿素耐药相关的突变种类,表明线粒体可能是疟原虫耐药抑制的一个重要靶点。

相似文献

1
Evolution of resistance in vitro reveals mechanisms of artemisinin activity in .
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26881-26891. doi: 10.1073/pnas.1914732116. Epub 2019 Dec 5.
9
Host immunity to and the assessment of emerging artemisinin resistance in a multinational cohort.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3515-3520. doi: 10.1073/pnas.1615875114. Epub 2017 Mar 13.

引用本文的文献

1
Genomic insights into monensin resistance development in .
Front Vet Sci. 2025 Apr 1;12:1459791. doi: 10.3389/fvets.2025.1459791. eCollection 2025.
2
Vesicular mechanisms of drug resistance in apicomplexan parasites.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001024. doi: 10.1128/mmbr.00010-24. Epub 2025 Jan 24.
4
The Search for Drugs Derived from Natural Products for Infection Treatment in the Last 20 Years - A Systematic Review.
Curr Top Med Chem. 2024;24(22):1960-1999. doi: 10.2174/0115680266299409240606062235.
5
Bicyclic Pyrrolidine Inhibitors of Phenylalanine t-RNA Synthetase with Antiparasitic Potency In Vitro and Brain Exposure.
ACS Infect Dis. 2024 Jun 14;10(6):2212-2221. doi: 10.1021/acsinfecdis.4c00170. Epub 2024 May 14.
6
Anti- activity of rose hip oil-solid lipid nanoparticles.
Food Sci Nutr. 2024 Feb 20;12(5):3725-3734. doi: 10.1002/fsn3.4043. eCollection 2024 May.
8
Applicability of Redirecting Artemisinins for New Targets.
Glob Chall. 2023 Oct 27;7(12):2300030. doi: 10.1002/gch2.202300030. eCollection 2023 Dec.
9
Anti- activity of L. and its fractions: and assays.
Front Microbiol. 2023 Jul 3;14:1193810. doi: 10.3389/fmicb.2023.1193810. eCollection 2023.
10
MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii.
PLoS Biol. 2023 May 8;21(5):e3002110. doi: 10.1371/journal.pbio.3002110. eCollection 2023 May.

本文引用的文献

1
Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility.
Nat Commun. 2020 Sep 23;11(1):4813. doi: 10.1038/s41467-020-18624-0.
2
Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria.
Trends Parasitol. 2019 Jul;35(7):529-543. doi: 10.1016/j.pt.2019.05.002. Epub 2019 Jun 5.
3
Artemisinin-Based Antimalarial Drug Therapy: Molecular Pharmacology and Evolving Resistance.
Trop Med Infect Dis. 2019 Jun 4;4(2):89. doi: 10.3390/tropicalmed4020089.
4
Biological Activities of Artemisinin Derivatives Beyond Malaria.
Curr Top Med Chem. 2019;19(3):205-222. doi: 10.2174/1568026619666190122144217.
5
Discovery of Selective Toxoplasma gondii Dihydrofolate Reductase Inhibitors for the Treatment of Toxoplasmosis.
J Med Chem. 2019 Feb 14;62(3):1562-1576. doi: 10.1021/acs.jmedchem.8b01754. Epub 2019 Jan 24.
6
Artemisinin resistance phenotypes and K13 inheritance in a cross and model.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12513-12518. doi: 10.1073/pnas.1813386115. Epub 2018 Nov 19.
7
Essential cGMP Signaling in Toxoplasma Is Initiated by a Hybrid P-Type ATPase-Guanylate Cyclase.
Cell Host Microbe. 2018 Dec 12;24(6):804-816.e6. doi: 10.1016/j.chom.2018.10.015. Epub 2018 Nov 15.
8
Mutations in actin-binding protein coronin confer reduced artemisinin susceptibility.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12799-12804. doi: 10.1073/pnas.1812317115. Epub 2018 Nov 12.
9
Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome.
Nat Commun. 2018 Sep 18;9(1):3801. doi: 10.1038/s41467-018-06221-1.
10
Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice.
Clin Microbiol Rev. 2018 Sep 12;31(4). doi: 10.1128/CMR.00057-17. Print 2018 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验