Suppr超能文献

鞘氨醇 1-磷酸在慢性肾脏病及其治疗中的红细胞代谢重编程。

Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies.

机构信息

From the Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.

Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.

出版信息

Circ Res. 2020 Jul 17;127(3):360-375. doi: 10.1161/CIRCRESAHA.119.316298. Epub 2020 Apr 14.

Abstract

RATIONALE

Hypoxia promotes renal damage and progression of chronic kidney disease (CKD). The erythrocyte is the only cell type for oxygen (O) delivery. Sphingosine 1-phosphate (S1P)-a highly enriched biolipid in erythrocytes-is recently reported to be induced under high altitude in normal humans to enhance O delivery. However, nothing is known about erythrocyte S1P in CKD.

OBJECTIVE

To investigate the function and metabolic basis of erythrocyte S1P in CKD with a goal to explore potential therapeutics.

METHODS AND RESULTS

Using erythrocyte-specific SphK1 (sphingosine kinase 1; the only enzyme to produce S1P in erythrocytes) knockout mice () in an experimental model of hypertensive CKD with Ang II (angiotensin II) infusion, we found severe renal hypoxia, hypertension, proteinuria, and fibrosis in Ang II-infused mice compared with controls. Untargeted metabolomics profiling and in vivo U-C isotopically labeled glucose flux analysis revealed that SphK1 is required for channeling glucose metabolism toward glycolysis versus pentose phosphate pathway, resulting in enhanced erythroid-specific Rapoport-Luebering shunt in Ang II-infused mice. Mechanistically, increased erythrocyte S1P functioning intracellularly activates AMPK (AMP-activated protein kinase) 1α and BPGM (bisphosphoglycerate mutase) by reducing ceramide/S1P ratio and inhibiting PP2A (protein phosphatase 2A), leading to increased 2,3-bisphosphoglycerate (an erythrocyte-specific metabolite negatively regulating Hb [hemoglobin]-O-binding affinity) production and thus more O delivery to counteract kidney hypoxia and progression to CKD. Preclinical studies revealed that an AMPK agonist or a PP2A inhibitor rescued the severe CKD phenotype in Ang II-infused mice and prevented development of CKD in the control mice by inducing 2,3-bisphosphoglycerate production and thus enhancing renal oxygenation. Translational research validated mouse findings in erythrocytes of hypertensive CKD patients and cultured human erythrocytes.

CONCLUSIONS

Our study elucidates the beneficial role of eSphk1-S1P in hypertensive CKD by channeling glucose metabolism toward Rapoport-Luebering shunt and inducing 2,3-bisphosphoglycerate production and O delivery via a PP2A-AMPK1α signaling pathway. These findings reveal the metabolic and molecular basis of erythrocyte S1P in CKD and new therapeutic avenues.

摘要

背景

缺氧会导致肾脏损伤和慢性肾脏病(CKD)的进展。红细胞是唯一输送氧气(O)的细胞类型。最近有报道称,在高海拔地区,正常人体内的红细胞会产生丰富的神经鞘氨醇 1-磷酸(S1P),以增强 O 的输送。然而,目前尚不清楚 CKD 患者的红细胞 S1P 情况。

目的

研究红细胞 S1P 在 CKD 中的功能和代谢基础,以期探索潜在的治疗方法。

方法和结果

在血管紧张素 II(Ang II)输注诱导的高血压 CKD 实验模型中,我们使用红细胞特异性 SphK1(鞘氨醇激酶 1;红细胞中唯一产生 S1P 的酶)敲除小鼠(),发现与对照组相比,Ang II 输注小鼠的肾脏严重缺氧、高血压、蛋白尿和纤维化。非靶向代谢组学分析和体内 U-C 同位素标记葡萄糖通量分析显示,SphK1 负责将葡萄糖代谢导向糖酵解而非磷酸戊糖途径,从而导致 Ang II 输注小鼠中红细胞特异性 Rapoport-Luebering 分流增加。在机制上,增加的红细胞 S1P 功能可通过降低神经鞘氨醇/S1P 比值和抑制蛋白磷酸酶 2A(PP2A)来激活 AMPK(AMP 激活的蛋白激酶)1α 和 BPGM(磷酸甘油酸变位酶),从而增加 2,3-二磷酸甘油酸(一种负调节血红蛋白(Hb)-O 结合亲和力的红细胞特异性代谢物)的产生,从而输送更多的 O 以抵消肾脏缺氧并阻止 CKD 的进展。临床前研究表明,AMPK 激动剂或 PP2A 抑制剂通过诱导 2,3-二磷酸甘油酸的产生,从而增强肾脏氧合作用,挽救 Ang II 输注小鼠的严重 CKD 表型,并预防对照小鼠 CKD 的发生。转化研究验证了高血压 CKD 患者红细胞和培养的人红细胞中该小鼠研究的发现。

结论

本研究通过将葡萄糖代谢导向 Rapoport-Luebering 分流并诱导 2,3-二磷酸甘油酸的产生和 O 的输送,阐明了 eSphk1-S1P 在高血压 CKD 中的有益作用,该过程涉及 PP2A-AMPK1α 信号通路。这些发现揭示了红细胞 S1P 在 CKD 中的代谢和分子基础,并为新的治疗方法提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验