Suppr超能文献

SWI/SNF 复合物在癌症中的作用——生物学、生物标志物和治疗。

The SWI/SNF complex in cancer - biology, biomarkers and therapy.

机构信息

Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Nat Rev Clin Oncol. 2020 Jul;17(7):435-448. doi: 10.1038/s41571-020-0357-3. Epub 2020 Apr 17.

Abstract

Cancer genome-sequencing studies have revealed a remarkably high prevalence of mutations in genes encoding subunits of the SWI/SNF chromatin-remodelling complexes, with nearly 25% of all cancers harbouring aberrations in one or more of these genes. A role for such aberrations in tumorigenesis is evidenced by cancer predisposition in both carriers of germline loss-of-function mutations and genetically engineered mouse models with inactivation of any of several SWI/SNF subunits. Whereas many of the most frequently mutated oncogenes and tumour-suppressor genes have been studied for several decades, the cancer-promoting role of mutations in SWI/SNF genes has been recognized only more recently, and thus comparatively less is known about these alterations. Consequently, increasing research interest is being focused on understanding the prognostic and, in particular, the potential therapeutic implications of mutations in genes encoding SWI/SNF subunits. Herein, we review the burgeoning data on the mechanisms by which mutations affecting SWI/SNF complexes promote cancer and describe promising emerging opportunities for targeted therapy, including immunotherapy with immune-checkpoint inhibitors, presented by these mutations. We also highlight ongoing clinical trials open specifically to patients with cancers harbouring mutations in certain SWI/SNF genes.

摘要

癌症基因组测序研究揭示了 SWI/SNF 染色质重塑复合物亚基编码基因的突变发生率非常高,几乎所有癌症中都有一个或多个这些基因的异常。这些异常在肿瘤发生中的作用证据是,携带胚系功能丧失突变的携带者以及通过基因工程使几种 SWI/SNF 亚基失活的小鼠模型都具有癌症易感性。虽然许多最常突变的癌基因和肿瘤抑制基因已经研究了几十年,但 SWI/SNF 基因突变在促进癌症方面的作用直到最近才被认识到,因此对这些改变的了解相对较少。因此,越来越多的研究兴趣集中在了解 SWI/SNF 基因编码亚基突变的预后,特别是潜在的治疗意义上。本文综述了影响 SWI/SNF 复合物的突变促进癌症的机制的新兴数据,并描述了针对这些突变的靶向治疗的有前景的新机会,包括免疫检查点抑制剂的免疫治疗。我们还强调了专门针对携带某些 SWI/SNF 基因突变的癌症患者的正在进行的临床试验。

相似文献

1
The SWI/SNF complex in cancer - biology, biomarkers and therapy.
Nat Rev Clin Oncol. 2020 Jul;17(7):435-448. doi: 10.1038/s41571-020-0357-3. Epub 2020 Apr 17.
2
Advances in the role of SWI/SNF complexes in tumours.
J Cell Mol Med. 2023 Apr;27(8):1023-1031. doi: 10.1111/jcmm.17709. Epub 2023 Mar 8.
3
Chromatin remodellers as therapeutic targets.
Nat Rev Drug Discov. 2024 Sep;23(9):661-681. doi: 10.1038/s41573-024-00978-5. Epub 2024 Jul 16.
4
Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities.
Expert Rev Anticancer Ther. 2019 May;19(5):375-391. doi: 10.1080/14737140.2019.1605905. Epub 2019 May 13.
5
BAFfling pathologies: Alterations of BAF complexes in cancer.
Cancer Lett. 2018 Apr 10;419:266-279. doi: 10.1016/j.canlet.2018.01.046. Epub 2018 Jan 31.
6
The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A.
PLoS One. 2019 Sep 10;14(9):e0222305. doi: 10.1371/journal.pone.0222305. eCollection 2019.
7
SWI/SNF chromatin remodeling and human malignancies.
Annu Rev Pathol. 2015;10:145-71. doi: 10.1146/annurev-pathol-012414-040445. Epub 2014 Oct 27.
8
SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.
Nat Med. 2015 Dec;21(12):1491-6. doi: 10.1038/nm.3968. Epub 2015 Nov 9.
9
Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities.
Curr Opin Genet Dev. 2017 Feb;42:56-67. doi: 10.1016/j.gde.2017.02.004. Epub 2017 Apr 6.

引用本文的文献

1
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
2
Epigenetic Regulation of Aging and its Rejuvenation.
MedComm (2020). 2025 Sep 1;6(9):e70369. doi: 10.1002/mco2.70369. eCollection 2025 Sep.
4
ACTL6A depletion induces KLF4-mediated anti-tumorigenic effects in colorectal cancer.
Cell Death Dis. 2025 Aug 28;16(1):653. doi: 10.1038/s41419-025-07946-w.
6
Epigenetic control in thyroid cancer: mechanisms and clinical perspective.
Cell Death Discov. 2025 Aug 17;11(1):387. doi: 10.1038/s41420-025-02688-2.
7
ARHGAP4/MYH9/β-catenin/c-Jun positive feedback loop promotes colorectal cancer stemness.
NPJ Precis Oncol. 2025 Aug 15;9(1):285. doi: 10.1038/s41698-025-01022-4.
8
SMARCB1/INI1-deficient lung cancer with lymph node metastasis: a case report and literature review.
AME Case Rep. 2025 Jun 19;9:86. doi: 10.21037/acr-24-276. eCollection 2025.
9
Identification of variants in SWI/SNF complex genes associated with neurodevelopmental disorders.
Front Genet. 2025 Jul 8;16:1511796. doi: 10.3389/fgene.2025.1511796. eCollection 2025.
10
SChLAP1 regulates the metastasis and apoptosis of prostate cancer partly via miR-101.
Transl Androl Urol. 2025 Jun 30;14(6):1782-1796. doi: 10.21037/tau-2025-316. Epub 2025 Jun 25.

本文引用的文献

1
Genomic and Immunologic Characterization of INI1-Deficient Pediatric Cancers.
Clin Cancer Res. 2020 Jun 15;26(12):2882-2890. doi: 10.1158/1078-0432.CCR-19-3089. Epub 2020 Mar 2.
2
Pan-cancer analysis of Alterations as Biomarkers for Immunotherapy Outcomes.
J Cancer. 2020 Jan 1;11(4):776-780. doi: 10.7150/jca.41296. eCollection 2020.
3
Translational genomics of malignant rhabdoid tumours: Current impact and future possibilities.
Semin Cancer Biol. 2020 Apr;61:30-41. doi: 10.1016/j.semcancer.2019.12.017. Epub 2020 Jan 7.
4
Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus.
Neuro Oncol. 2020 May 15;22(5):613-624. doi: 10.1093/neuonc/noz235.
5
Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors.
Cancer Cell. 2019 Dec 9;36(6):597-612.e8. doi: 10.1016/j.ccell.2019.10.008. Epub 2019 Nov 7.
6
7
Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers.
Semin Cancer Biol. 2020 Apr;61:180-198. doi: 10.1016/j.semcancer.2019.09.018. Epub 2019 Sep 27.
8
The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A.
PLoS One. 2019 Sep 10;14(9):e0222305. doi: 10.1371/journal.pone.0222305. eCollection 2019.
9
ARID1A promotes genomic stability through protecting telomere cohesion.
Nat Commun. 2019 Sep 6;10(1):4067. doi: 10.1038/s41467-019-12037-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验