Suppr超能文献

小分子和 CRISPR 筛选技术的结合揭示了小儿横纹肌肉瘤中受体酪氨酸激酶的依赖性。

Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors.

机构信息

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.

Broad Institute, Cambridge, MA 02142, USA.

出版信息

Cell Rep. 2019 Aug 27;28(9):2331-2344.e8. doi: 10.1016/j.celrep.2019.07.021.

Abstract

Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current drugs and need alternative, informed therapeutic options. To nominate potential targets, we performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in cancers with "quiet" genomes.

摘要

癌症通常被视为一种突变和染色体异常的疾病。然而,一些癌症,包括小儿横纹肌肉瘤(RTs),缺乏当前药物可靶向的复发性改变,需要替代的、明智的治疗选择。为了提名潜在的靶点,我们在大量 RT 和对照细胞系中进行了高通量小分子筛选,并辅以全基因组 CRISPR-Cas9 基因敲除筛选。这些方法汇聚在一起,揭示了几个受体酪氨酸激酶(RTKs)作为治疗靶点,RTK 抑制在体外抑制 RT 细胞生长和体内异种移植模型中有效。RT 细胞系高度表达和激活(磷酸化)不同的 RTKs,在没有突变或扩增的情况下产生依赖性。在 RTK 信号下游,我们鉴定出编码促生长信号蛋白 SHP2 的 PTPN11 作为所有 RT 细胞系的共同依赖性。这项研究表明,大规模扰动筛选可以揭示“安静”基因组癌症的脆弱性。

相似文献

3
MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors.
Cancer Res. 2019 May 1;79(9):2404-2414. doi: 10.1158/0008-5472.CAN-18-3066. Epub 2019 Feb 12.
5
Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.
Nature. 2016 Jul 7;535(7610):148-52. doi: 10.1038/nature18621. Epub 2016 Jun 29.
6
PCC0208023, a potent SHP2 allosteric inhibitor, imparts an antitumor effect against KRAS mutant colorectal cancer.
Toxicol Appl Pharmacol. 2020 Jul 1;398:115019. doi: 10.1016/j.taap.2020.115019. Epub 2020 Apr 24.
7
Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine.
Clin Cancer Res. 2020 Sep 15;26(18):4995-5006. doi: 10.1158/1078-0432.CCR-19-2717. Epub 2020 Jul 6.
8
PTPN11 Is a Central Node in Intrinsic and Acquired Resistance to Targeted Cancer Drugs.
Cell Rep. 2015 Sep 29;12(12):1978-85. doi: 10.1016/j.celrep.2015.08.037. Epub 2015 Sep 10.

引用本文的文献

1
Rapid and robust validation of pooled CRISPR knockout screens using CelFi.
Sci Rep. 2025 Apr 17;15(1):13358. doi: 10.1038/s41598-025-96095-3.
2
Untangling the Role of MYC in Sarcomas and Its Potential as a Promising Therapeutic Target.
Int J Mol Sci. 2025 Feb 25;26(5):1973. doi: 10.3390/ijms26051973.
3
Chromatin remodellers as therapeutic targets.
Nat Rev Drug Discov. 2024 Sep;23(9):661-681. doi: 10.1038/s41573-024-00978-5. Epub 2024 Jul 16.
5
Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update.
Front Mol Biosci. 2024 May 21;11:1382190. doi: 10.3389/fmolb.2024.1382190. eCollection 2024.
7
Developmental origins shape the paediatric cancer genome.
Nat Rev Cancer. 2024 Jun;24(6):382-398. doi: 10.1038/s41568-024-00684-9. Epub 2024 May 2.
8
Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform.
Neurooncol Adv. 2024 Jan 16;6(1):vdae004. doi: 10.1093/noajnl/vdae004. eCollection 2024 Jan-Dec.
9
Emerging target discovery and drug repurposing opportunities in chordoma.
Front Oncol. 2022 Oct 27;12:1009193. doi: 10.3389/fonc.2022.1009193. eCollection 2022.
10
Pediatric Sarcomas: The Next Generation of Molecular Studies.
Cancers (Basel). 2022 May 20;14(10):2515. doi: 10.3390/cancers14102515.

本文引用的文献

1
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature. 2019 May;569(7757):503-508. doi: 10.1038/s41586-019-1186-3. Epub 2019 May 8.
2
Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
Nat Methods. 2019 Mar;16(3):243-245. doi: 10.1038/s41592-018-0308-4. Epub 2019 Feb 11.
5
SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters.
Nat Genet. 2017 Nov;49(11):1613-1623. doi: 10.1038/ng.3958. Epub 2017 Sep 25.
6
SHP2 is required for BCR-ABL1-induced hematologic neoplasia.
Leukemia. 2018 Jan;32(1):203-213. doi: 10.1038/leu.2017.250. Epub 2017 Aug 14.
7
BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation.
Nucleic Acids Res. 2017 Jun 20;45(11):6442-6458. doi: 10.1093/nar/gkx259.
9
Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors.
Cancer Cell. 2016 Dec 12;30(6):891-908. doi: 10.1016/j.ccell.2016.11.003.
10
ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice.
Nat Genet. 2017 Feb;49(2):296-302. doi: 10.1038/ng.3744. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验