Suppr超能文献

基于生物信息学分析鉴定急性心肌梗死患者的特征自噬相关基因。

Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analyses.

机构信息

Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.

出版信息

Biosci Rep. 2020 Jul 31;40(7). doi: 10.1042/BSR20200790.

Abstract

OBJECTIVE

To identify feature autophagy-related genes (ARGs) in patients with acute myocardial infarction (AMI) and further investigate their value in the diagnosis of AMI.

METHODS

Gene microarray expression data of AMI peripheral blood samples were downloaded from the GSE66360 dataset. The data were randomly classified into a discovery cohort (21 AMI patients and 22 healthy controls) and a validation cohort (28 AMI patients and 28 healthy controls). Differentially expressed ARGs between patients with AMI and healthy controls in the discovery cohort were identified using a statistical software package. Feature ARGs were screened based on support vector machine-recursive feature elimination (SVM-RFE), and an SVM classifier was constructed. Receiver operating characteristic (ROC) analysis was used to investigate the predictive value of the classifier, which was further verified in an independent external cohort.

RESULTS

A total of seven genes were identified based on SVM-RFE. The SVM classifier had an excellent discrimination ability in both the discovery cohort (area under the curve [AUC] = 0.968) and the validation cohort (AUC = 0.992), which was further confirmed in the GSE48060 dataset (AUC = 0.963). Furthermore, the SVM classifier showed outstanding discrimination between AMI patients with and without recurrent events in the independent external cohort (AUC = 0.992). The identified genes are mainly involved in the cellular response to autophagy, macroautophagy, apoptosis, and the FoxO signaling pathway.

CONCLUSION

Our study identified feature ARGs and indicated their potential roles in AMI diagnosis to improve our understanding of the molecular mechanism underlying the occurrence of AMI.

摘要

目的

鉴定急性心肌梗死(AMI)患者的特征自噬相关基因(ARGs),并进一步探讨其在 AMI 诊断中的价值。

方法

从 GSE66360 数据集下载 AMI 外周血样本的基因微阵列表达数据。将数据随机分为发现队列(21 例 AMI 患者和 22 例健康对照者)和验证队列(28 例 AMI 患者和 28 例健康对照者)。使用统计软件包在发现队列中鉴定 AMI 患者和健康对照者之间差异表达的 ARGs。基于支持向量机递归特征消除(SVM-RFE)筛选特征 ARGs,并构建 SVM 分类器。使用接收者操作特征(ROC)分析来研究分类器的预测价值,并在独立的外部队列中进一步验证。

结果

基于 SVM-RFE 共鉴定出 7 个基因。SVM 分类器在发现队列(曲线下面积[AUC] = 0.968)和验证队列(AUC = 0.992)中均具有出色的区分能力,在 GSE48060 数据集(AUC = 0.963)中进一步得到验证。此外,SVM 分类器在独立的外部队列中对 AMI 患者是否有复发事件也具有出色的区分能力(AUC = 0.992)。鉴定出的基因主要参与细胞对自噬、巨自噬、细胞凋亡和 FoxO 信号通路的反应。

结论

本研究鉴定了特征 ARGs,并表明它们在 AMI 诊断中的潜在作用,以提高我们对 AMI 发生的分子机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f8/7350888/6c047f196b75/bsr-40-bsr20200790-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验