Suppr超能文献

TopicNet:一种测量转录调控网络变化的框架。

TopicNet: a framework for measuring transcriptional regulatory network change.

机构信息

Department of Molecular Biophysics and Biochemistry.

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.

出版信息

Bioinformatics. 2020 Jul 1;36(Suppl_1):i474-i481. doi: 10.1093/bioinformatics/btaa403.

Abstract

MOTIVATION

Recently, many chromatin immunoprecipitation sequencing experiments have been carried out for a diverse group of transcription factors (TFs) in many different types of human cells. These experiments manifest large-scale and dynamic changes in regulatory network connectivity (i.e. network 'rewiring'), highlighting the different regulatory programs operating in disparate cellular states. However, due to the dense and noisy nature of current regulatory networks, directly comparing the gains and losses of targets of key TFs across cell states is often not informative. Thus, here, we seek an abstracted, low-dimensional representation to understand the main features of network change.

RESULTS

We propose a method called TopicNet that applies latent Dirichlet allocation to extract functional topics for a collection of genes regulated by a given TF. We then define a rewiring score to quantify regulatory-network changes in terms of the topic changes for this TF. Using this framework, we can pinpoint particular TFs that change greatly in network connectivity between different cellular states (such as observed in oncogenesis). Also, incorporating gene expression data, we define a topic activity score that measures the degree to which a given topic is active in a particular cellular state. And we show how activity differences can indicate differential survival in various cancers.

AVAILABILITY AND IMPLEMENTATION

The TopicNet framework and related analysis were implemented using R and all codes are available at https://github.com/gersteinlab/topicnet.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近,许多不同类型的人类细胞中的许多转录因子(TFs)进行了大量的染色质免疫沉淀测序实验。这些实验表现出调节网络连接性的大规模和动态变化(即网络“重新布线”),突出了不同调节程序在不同细胞状态下的运作。然而,由于当前调节网络的密集和嘈杂性质,直接比较关键 TF 的目标的增益和损失通常没有信息。因此,在这里,我们寻求一种抽象的低维表示形式,以了解网络变化的主要特征。

结果

我们提出了一种称为 TopicNet 的方法,该方法使用潜在狄利克雷分配(LDA)从给定 TF 调节的一组基因中提取功能主题。然后,我们定义了一个重新布线分数,以根据该 TF 的主题变化来量化调节网络变化。使用这个框架,我们可以确定特定的 TF 在不同细胞状态之间的网络连接中变化很大(如在肿瘤发生中观察到的)。此外,结合基因表达数据,我们定义了一个主题活动分数,用于衡量给定主题在特定细胞状态下的活跃程度。我们展示了活性差异如何指示各种癌症中的差异生存。

可用性和实现

使用 R 实现了 TopicNet 框架和相关分析,所有代码都可在 https://github.com/gersteinlab/topicnet 上获得。

补充信息

补充数据可在《生物信息学》在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c327/7355251/39a1917b9066/btaa403f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验