Suppr超能文献

工程化的血管紧张素转换酶2(ACE2)受体陷阱可有效中和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)。

Engineered ACE2 receptor traps potently neutralize SARS-CoV-2.

作者信息

Glasgow Anum, Glasgow Jeff, Limonta Daniel, Solomon Paige, Lui Irene, Zhang Yang, Nix Matthew A, Rettko Nicholas J, Lim Shion A, Zha Shoshana, Yamin Rachel, Kao Kevin, Rosenberg Oren S, Ravetch Jeffrey V, Wiita Arun P, Leung Kevin K, Zhou Xin X, Hobman Tom C, Kortemme Tanja, Wells James A

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA.

Department of Pharmaceutical Chemistry, University of California at San Francisco, CA.

出版信息

bioRxiv. 2020 Aug 4:2020.07.31.231746. doi: 10.1101/2020.07.31.231746.

Abstract

An essential mechanism for SARS-CoV-1 and -2 infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human Fc domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2 pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50) in the 10-100 ng/ml range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-utilizing coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated or generated from convalescent patients.

摘要

严重急性呼吸综合征冠状病毒1型(SARS-CoV-1)和2型(SARS-CoV-2)感染的一个关键机制始于病毒刺突蛋白与人受体蛋白血管紧张素转换酶2(ACE2)的结合。在此,我们描述了一种逐步工程方法,以生成一组亲和力优化、酶促失活的ACE2变体,这些变体能够有效阻断SARS-CoV-2对细胞的感染。这些优化的受体陷阱紧密结合病毒刺突蛋白的受体结合域(RBD),并阻止其进入宿主细胞。我们首先使用两阶段柔性蛋白质主链设计过程通过计算设计ACE2-RBD界面,使对RBD的亲和力提高了12倍。通过酵母表面展示的随机诱变和筛选,这些设计的受体变体的亲和力又提高了14倍。亲和力最高的变体包含七个氨基酸变化,与RBD的结合比野生型ACE2紧密170倍。通过添加天然ACE2 collectrin结构域并与人Fc结构域融合以提高稳定性和亲和力,最优化的ACE2受体陷阱以10 - 100 ng/ml范围内的半数最大抑制浓度(IC50)中和了SARS-CoV-2假型慢病毒和正宗的SARS-CoV-2病毒。工程化的ACE2受体陷阱为对抗SARS-CoV-2和其他利用ACE2的冠状病毒感染提供了一条有前景的途径,其关键优势在于病毒抗性也可能损害病毒进入。此外,这种陷阱可以针对具有已知进入受体的病毒进行预先设计,以实现更快的治疗反应,而无需从康复患者中分离或产生中和抗体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2384/7427336/0fe0753c776d/nihpp-2020.07.31.231746-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验