Suppr超能文献

恢复盲人的色觉:晚期色素性视网膜炎患者视网膜的电刺激策略

Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.

作者信息

Yue Lan, Castillo Johnny, Gonzalez Alejandra Calle, Neitz Jay, Humayun Mark S

机构信息

Roski Eye Institute, University of Southern California, Los Angeles, California; Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California.

Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California.

出版信息

Ophthalmology. 2021 Mar;128(3):453-462. doi: 10.1016/j.ophtha.2020.08.019. Epub 2020 Aug 25.

Abstract

PURPOSE

Bioelectronic retinal prostheses that stimulate the remaining inner retinal neurons, bypassing degenerated photoreceptors, have been demonstrated to restore some vision in patients blinded by retinitis pigmentosa (RP). These implants encode luminance of the visual scene into electrical stimulation, however, leaving out chromatic information. Yet color plays an important role in visual processing when it comes to recognizing objects and orienting to the environment, especially at low spatial resolution as generated by current retinal prostheses. In this study, we tested the feasibility of partially restoring color perception in blind RP patients, with the aim to provide chromatic information as an extra visual cue.

DESIGN

Case series.

PARTICIPANTS

Seven subjects blinded by advanced RP and monocularly fitted with an epiretinal prosthesis.

METHODS

Frequency-modulated electrical stimulation of retina was tested. Phosphene brightness was controlled by amplitude tuning, and color perception was acquired using the Red, Yellow, Green, and Blue (RYGB) hue and saturation scaling model.

MAIN OUTCOME MEASURES

Brightness and color of the electrically elicited visual perception reported by the subjects.

RESULTS

Within the tested parameter space, 5 of 7 subjects perceived chromatic colors along or nearby the blue-yellow axis in color space. Aggregate data obtained from 20 electrodes of the 5 subjects show that an increase of the stimulation frequency from 6 to 120 Hz shifted color perception toward blue/purple despite a significant inter-subject variation in the transition frequency. The correlation between frequency and blue-yellow perception exhibited a good level of consistency over time and spatially matched multi-color perception was possible with simultaneous stimulation of paired electrodes. No obvious correlation was found between blue sensations and array placement or status of visual impairment.

CONCLUSIONS

These findings present a strategy for the generation and control of color perception along the blue-yellow axis in blind patients with RP by electrically stimulating the retina. It could transform the current prosthetic vision landscape by leading in a new direction beyond the efforts to improve the visual acuity. This study also offers new insights into the response of our visual system to electrical stimuli in the photoreceptor-less retina that warrant further mechanistic investigation.

摘要

目的

生物电子视网膜假体通过刺激剩余的视网膜内层神经元,绕过退化的光感受器,已被证明能使因色素性视网膜炎(RP)而失明的患者恢复部分视力。然而,这些植入物将视觉场景的亮度编码为电刺激,却遗漏了色彩信息。然而,在识别物体和适应环境时,颜色在视觉处理中起着重要作用,尤其是在当前视网膜假体产生的低空间分辨率情况下。在本研究中,我们测试了在患有RP的盲人患者中部分恢复颜色感知的可行性,旨在提供色彩信息作为额外的视觉线索。

设计

病例系列。

参与者

7名因晚期RP而失明且单眼植入视网膜假体的受试者。

方法

测试了视网膜的调频电刺激。通过幅度调整来控制光幻视亮度,并使用红、黄、绿、蓝(RYGB)色调和饱和度缩放模型来获取颜色感知。

主要观察指标

受试者报告的电诱发视觉感知的亮度和颜色。

结果

在测试的参数空间内,7名受试者中有5名在颜色空间中感知到沿蓝黄轴或其附近的彩色。从这5名受试者的20个电极获得的汇总数据表明,尽管在转换频率上受试者之间存在显著差异,但将刺激频率从6Hz增加到120Hz会使颜色感知向蓝色/紫色偏移。频率与蓝黄感知之间的相关性在时间上表现出良好的一致性,并且通过同时刺激配对电极可以实现空间上匹配的多色感知。在蓝色感觉与阵列位置或视力损害状态之间未发现明显相关性。

结论

这些发现提出了一种通过电刺激视网膜在患有RP的盲人患者中沿蓝黄轴产生和控制颜色感知的策略。它可能会引领一个超越提高视力努力的新方向,从而改变当前的假体视觉格局。本研究还为我们的视觉系统在无感光细胞的视网膜中对电刺激的反应提供了新的见解,值得进一步进行机制研究。

相似文献

1
Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
Ophthalmology. 2021 Mar;128(3):453-462. doi: 10.1016/j.ophtha.2020.08.019. Epub 2020 Aug 25.
2
Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation.
Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):205-14. doi: 10.1167/iovs.11-8401.
3
Visual perception elicited by electrical stimulation of retina in blind humans.
Arch Ophthalmol. 1996 Jan;114(1):40-6. doi: 10.1001/archopht.1996.01100130038006.
5
Brightness as a function of current amplitude in human retinal electrical stimulation.
Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5017-25. doi: 10.1167/iovs.08-2897. Epub 2009 Jul 15.
6
Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5355-61. doi: 10.1167/iovs.02-0819.
7
Artificial vision.
Eye (Lond). 1998;12 ( Pt 3b):605-7. doi: 10.1038/eye.1998.151.
9
Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant.
Arch Ophthalmol. 2009 Apr;127(4):398-401. doi: 10.1001/archophthalmol.2009.20.
10
The Detection of Motion by Blind Subjects With the Epiretinal 60-Electrode (Argus II) Retinal Prosthesis.
JAMA Ophthalmol. 2013 Feb;131(2):183-9. doi: 10.1001/2013.jamaophthalmol.221.

引用本文的文献

1
Machine Learning Techniques for Simulating Human Psychophysical Testing of Low-Resolution Phosphene Face Images in Artificial Vision.
Adv Sci (Weinh). 2025 Apr;12(15):e2405789. doi: 10.1002/advs.202405789. Epub 2025 Feb 22.
2
The mechanism of human color vision and potential implanted devices for artificial color vision.
Front Neurosci. 2024 Jun 19;18:1408087. doi: 10.3389/fnins.2024.1408087. eCollection 2024.
4
Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model ().
Front Cell Neurosci. 2023 Sep 15;17:1258773. doi: 10.3389/fncel.2023.1258773. eCollection 2023.
5
Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration.
Sensors (Basel). 2023 Jun 21;23(13):5782. doi: 10.3390/s23135782.
6
Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses.
Sensors (Basel). 2022 Aug 30;22(17):6544. doi: 10.3390/s22176544.
7
Selective Activation of Retinal Ganglion Cell Subtypes Through Targeted Electrical Stimulation Parameters.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:350-359. doi: 10.1109/TNSRE.2022.3149967. Epub 2022 Feb 17.
9
Electrical devices for visual restoration.
Surv Ophthalmol. 2022 May-Jun;67(3):793-800. doi: 10.1016/j.survophthal.2021.08.008. Epub 2021 Sep 4.
10
Restoring Vision Naturally and Noninvasively.
Neurosci Bull. 2021 Nov;37(11):1642-1644. doi: 10.1007/s12264-021-00760-2. Epub 2021 Aug 12.

本文引用的文献

1
Evolution of the circuitry for conscious color vision in primates.
Eye (Lond). 2017 Feb;31(2):286-300. doi: 10.1038/eye.2016.257. Epub 2016 Dec 9.
2
Retinal stimulation strategies to restore vision: Fundamentals and systems.
Prog Retin Eye Res. 2016 Jul;53:21-47. doi: 10.1016/j.preteyeres.2016.05.002. Epub 2016 May 26.
3
Subretinal Visual Implant Alpha IMS--Clinical trial interim report.
Vision Res. 2015 Jun;111(Pt B):149-60. doi: 10.1016/j.visres.2015.03.001. Epub 2015 Mar 23.
4
Optimizing the electrical stimulation of retinal ganglion cells.
IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):169-78. doi: 10.1109/TNSRE.2014.2361900. Epub 2014 Oct 17.
5
The functional performance of the Argus II retinal prosthesis.
Expert Rev Med Devices. 2014 Jan;11(1):23-30. doi: 10.1586/17434440.2014.862494. Epub 2013 Nov 22.
6
Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode.
J Neural Eng. 2011 Oct;8(5):056017. doi: 10.1088/1741-2560/8/5/056017. Epub 2011 Sep 20.
7
Response variability to high rates of electric stimulation in retinal ganglion cells.
J Neurophysiol. 2011 Jul;106(1):153-62. doi: 10.1152/jn.00956.2010. Epub 2011 Apr 13.
8
Multiple components of ganglion cell desensitization in response to prosthetic stimulation.
J Neural Eng. 2011 Feb;8(1):016008. doi: 10.1088/1741-2560/8/1/016008. Epub 2011 Jan 19.
9
The genetics of normal and defective color vision.
Vision Res. 2011 Apr 13;51(7):633-51. doi: 10.1016/j.visres.2010.12.002. Epub 2010 Dec 15.
10
An in vitro model of a retinal prosthesis.
IEEE Trans Biomed Eng. 2008 Jun;55(6):1744-53. doi: 10.1109/tbme.2008.919126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验