Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan.
Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agriculture and Life Science, University of Tokyo, Tokyo 188-0002 Japan.
Plant Physiol. 2020 Dec;184(4):2078-2090. doi: 10.1104/pp.20.01069. Epub 2020 Sep 25.
In angiosperms, the NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport around PSI (CET). K Efflux Antiporter3 (KEA3) is a putative thylakoid H/K antiporter and allows an increase in membrane potential at the expense of the ∆pH component of the proton motive force. In this study, we discovered that the () mutation, which abolished NDH-dependent CET, enhanced the mutant phenotypes in Arabidopsis (). The NDH complex pumps protons during CET, further enhancing ∆pH, but its physiological function has not been fully clarified. The observed effect only took place upon exposure to light of 110 µmol photons m s after overnight dark adaptation. We propose two distinct modes of NDH action. In the initial phase, within 1 min after the onset of actinic light, the NDH-dependent CET engages with KEA3 to enhance electron transport efficiency. In the subsequent phase, in which the ∆pH-dependent down-regulation of the electron transport is relaxed, the NDH complex engages with KEA3 to relax the large ∆pH formed during the initial phase. We observed a similar impact of the mutation in the genetic background of the overexpression line, in which the size of ∆pH was enhanced. When photosynthesis was induced at 300 µmol photons m s, the contribution of KEA3 was negligible in the initial phase and the ∆pH-dependent down-regulation was not relaxed in the second phase. In the double mutant, the induction of CO fixation was delayed after overnight dark adaptation.
在被子植物中,NADH 脱氢酶样(NDH)复合物介导围绕 PSI(CET)的循环电子传递。K 外流反向转运蛋白 3(KEA3)是一种假定的类囊体 H/K 反向转运蛋白,允许在质子动力势的 ∆pH 组成物的代价下增加膜电位。在这项研究中,我们发现()突变,该突变消除了 NDH 依赖性 CET,增强了拟南芥()中 突变体的表型。NDH 复合物在 CET 期间泵送质子,进一步增强 ∆pH,但它的生理功能尚未完全阐明。观察到的效果仅在经过 110µmol 光子 m s 的光暴露后发生,这是在一夜的黑暗适应后。我们提出了 NDH 作用的两种不同模式。在初始阶段,在光的作用开始后 1 分钟内,NDH 依赖性 CET 与 KEA3 结合以提高电子传递效率。在随后的阶段中,放松了 ∆pH 依赖性的电子传递下调,NDH 复合物与 KEA3 结合以放松在初始阶段形成的大 ∆pH。我们在过表达系的 突变体的遗传背景中观察到了类似的影响,其中 ∆pH 的大小增强了。当在 300µmol 光子 m s 下诱导光合作用时,KEA3 在初始阶段的贡献可以忽略不计,并且在第二阶段中没有放松 ∆pH 依赖性的下调。在 双突变体中,在一夜的黑暗适应后,CO 固定的诱导被延迟。