Suppr超能文献

生物信息学预测 SARS-CoV-2 刺突蛋白的抗原呈递揭示了 HLA-DRB1*01 与墨西哥人群 COVID-19 死亡率的理论相关性:一种生态学方法。

A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach.

机构信息

Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Avenida de los Barrios 1, Tlalnepantla de Baz, Estado de México, Mexico.

Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico.

出版信息

J Med Virol. 2021 Apr;93(4):2029-2038. doi: 10.1002/jmv.26561. Epub 2020 Oct 10.

Abstract

SARS-CoV-2 infection is causing a pandemic disease that is reflected in challenging public health problems worldwide. Human leukocyte antigen (HLA)-based epitope prediction and its association with disease outcomes provide an important base for treatment design. A bioinformatic prediction of T cell epitopes and their restricted HLA Class I and II alleles was performed to obtain immunogenic epitopes and HLA alleles from the spike protein of the severe acute respiratory syndrome coronavirus 2 virus. Also, a correlation with the predicted fatality rate of hospitalized patients in 28 states of Mexico was done. Here, we describe a set of 10 highly immunogenic epitopes, together with different HLA alleles that can efficiently present these epitopes to T cells. Most of these epitopes are located within the S1 subunit of the spike protein, suggesting that this area is highly immunogenic. A statistical negative correlation was found between the frequency of HLA-DRB1*01 and the fatality rate in hospitalized patients in Mexico.

摘要

SARS-CoV-2 感染正在引发一种大流行疾病,这在全球范围内反映出具有挑战性的公共卫生问题。基于人类白细胞抗原(HLA)的表位预测及其与疾病结果的关联为治疗设计提供了重要基础。对 T 细胞表位及其受限的 HLA Ⅰ类和Ⅱ类等位基因进行生物信息学预测,以从严重急性呼吸综合征冠状病毒 2 病毒的刺突蛋白中获得免疫原性表位和 HLA 等位基因。还与墨西哥 28 个州住院患者的预测病死率进行了相关性分析。在这里,我们描述了一组 10 个高免疫原性表位,以及能够有效将这些表位呈递给 T 细胞的不同 HLA 等位基因。这些表位大多数位于刺突蛋白的 S1 亚单位内,表明该区域具有高度的免疫原性。在墨西哥住院患者中,HLA-DRB1*01 的频率与病死率之间存在统计学上的负相关。

相似文献

2
COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations.
Hum Vaccin Immunother. 2021 Apr 3;17(4):1097-1108. doi: 10.1080/21645515.2020.1823777. Epub 2020 Nov 11.
3
CD8 T-Cell Epitope Variations Suggest a Potential Antigen HLA-A2 Binding Deficiency for Spike Protein of SARS-CoV-2.
Front Immunol. 2022 Jan 18;12:764949. doi: 10.3389/fimmu.2021.764949. eCollection 2021.
5
Development and application of EpitopeScan, a Python3 toolset for mutation tracking in SARS-CoV-2 immunogenic epitopes.
Front Immunol. 2024 May 22;15:1356314. doi: 10.3389/fimmu.2024.1356314. eCollection 2024.
6
A vaccine built from potential immunogenic pieces derived from the SARS-CoV-2 spike glycoprotein: A computational approximation.
J Immunol Methods. 2022 Mar;502:113216. doi: 10.1016/j.jim.2022.113216. Epub 2022 Jan 7.
9
Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells.
Cell Rep. 2021 May 25;35(8):109179. doi: 10.1016/j.celrep.2021.109179. Epub 2021 May 13.

引用本文的文献

3
Evaluation the frequencies of HLA alleles in moderate and severe COVID-19 patients in Iran: A molecular HLA typing study.
Heliyon. 2024 Mar 26;10(7):e28528. doi: 10.1016/j.heliyon.2024.e28528. eCollection 2024 Apr 15.
4
The role of HLA genetic variants in COVID-19 susceptibility, severity, and mortality: A global review.
J Clin Lab Anal. 2024 Jan;38(1-2):e25005. doi: 10.1002/jcla.25005. Epub 2024 Jan 22.
6
HLA Variation and SARS-CoV-2 Specific Antibody Response.
Viruses. 2023 Mar 31;15(4):906. doi: 10.3390/v15040906.
8
The role of HLA genotypes in understanding the pathogenesis of severe COVID-19.
Egypt J Med Hum Genet. 2023;24(1):14. doi: 10.1186/s43042-023-00392-3. Epub 2023 Jan 26.
9
Ancestral origins are associated with SARS-CoV-2 susceptibility and protection in a Florida patient population.
PLoS One. 2023 Jan 17;18(1):e0276700. doi: 10.1371/journal.pone.0276700. eCollection 2023.
10

本文引用的文献

1
Autoimmune and inflammatory diseases following COVID-19.
Nat Rev Rheumatol. 2020 Aug;16(8):413-414. doi: 10.1038/s41584-020-0448-7.
3
The starting line for COVID-19 vaccine development.
Lancet. 2020 Jun 13;395(10240):1815-1816. doi: 10.1016/S0140-6736(20)31239-3. Epub 2020 May 28.
4
Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.
Cell. 2020 Jun 25;181(7):1489-1501.e15. doi: 10.1016/j.cell.2020.05.015. Epub 2020 May 20.
5
COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal.
J Heart Lung Transplant. 2020 May;39(5):405-407. doi: 10.1016/j.healun.2020.03.012. Epub 2020 Mar 20.
6
Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach.
Inform Med Unlocked. 2020;19:100338. doi: 10.1016/j.imu.2020.100338. Epub 2020 Apr 29.
8
COVID-19: immunopathology and its implications for therapy.
Nat Rev Immunol. 2020 May;20(5):269-270. doi: 10.1038/s41577-020-0308-3.
9
The COVID-19 vaccine development landscape.
Nat Rev Drug Discov. 2020 May;19(5):305-306. doi: 10.1038/d41573-020-00073-5.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验