Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain.
Pain. 2021 Apr 1;162(4):1241-1249. doi: 10.1097/j.pain.0000000000002108.
Using positron emission tomography, we recently demonstrated elevated brain levels of the 18 kDa translocator protein (TSPO), a glial activation marker, in chronic low back pain (cLBP) patients, compared to healthy controls (HCs). Here, we first sought to replicate the original findings in an independent cohort (15 cLBP, 37.8 ± 12.5 y/o; 18 HC, 48.2 ± 12.8 y/o). We then trained random forest machine learning algorithms based on TSPO imaging features combining discovery and replication cohorts (totaling 25 cLBP, 42.4 ± 13.2 y/o; 27 HC, 48.9 ± 12.6 y/o), to explore whether image features other than the mean contain meaningful information that might contribute to the discrimination of cLBP patients and HC. Feature importance was ranked using SHapley Additive exPlanations values, and the classification performance (in terms of area under the curve values) of classifiers containing only the mean, other features, or all features was compared using the DeLong test. Both region-of-interest and voxelwise analyses replicated the original observation of thalamic TSPO signal elevations in cLBP patients compared to HC (P < 0.05). The random forest-based analyses revealed that although the mean is a discriminating feature, other features demonstrate similar level of importance, including the maximum, kurtosis, and entropy. Our observations suggest that thalamic neuroinflammatory signal is a reproducible and discriminating feature for cLBP, further supporting a role for glial activation in human cLBP, and the exploration of neuroinflammation as a therapeutic target for chronic pain. This work further shows that TSPO signal contains a richness of information that the simple mean might fail to capture completely.
我们最近使用正电子发射断层扫描(PET)发现,慢性下背痛(CLBP)患者大脑中的 18 kDa 转位蛋白(TSPO)水平升高,这是一种神经胶质激活标志物,与健康对照组(HC)相比。在这里,我们首先在独立队列(15 名 CLBP,37.8 ± 12.5 岁;18 名 HC,48.2 ± 12.8 岁)中复制了最初的发现。然后,我们基于 TSPO 成像特征训练了随机森林机器学习算法,这些特征结合了发现和复制队列(共有 25 名 CLBP,42.4 ± 13.2 岁;27 名 HC,48.9 ± 12.6 岁),以探索除平均值以外的图像特征是否包含有助于区分 CLBP 患者和 HC 的有意义信息。使用 Shapley Additive exPlanations 值对特征重要性进行排名,并使用 DeLong 检验比较仅包含平均值、其他特征或所有特征的分类器的分类性能(以曲线下面积值表示)。ROI 和体素分析均复制了与 HC 相比,CLBP 患者丘脑 TSPO 信号升高的原始观察结果(P < 0.05)。基于随机森林的分析表明,尽管平均值是一个有区别的特征,但其他特征也具有相似的重要性,包括最大值、峰度和熵。我们的观察结果表明,丘脑神经炎症信号是 CLBP 的一种可重复和有区别的特征,进一步支持神经胶质激活在人类 CLBP 中的作用,并探索神经炎症作为慢性疼痛的治疗靶点。这项工作进一步表明,TSPO 信号包含丰富的信息,简单的平均值可能无法完全捕捉到。