Suppr超能文献

目前,评估纳米和微塑料对人类健康的风险是不可行的。

Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible.

机构信息

Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria.

Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.

出版信息

Int J Environ Res Public Health. 2020 Nov 27;17(23):8832. doi: 10.3390/ijerph17238832.

Abstract

The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.

摘要

人类暴露于纳米和微塑料颗粒(NMPs)被科学家、当局、政治、非政府组织和公众认为是一个潜在的健康危害问题。随着全球塑料生产和塑料材料的使用,NMPs 在环境中的浓度也在增加。NMPs 在许多水生生物以及人类样本中都可检测到,因此需要对 NMPs 对人类健康的风险进行评估。到目前为止,由于缺乏适当的参考材料、分析障碍以及缺乏定义和标准化的研究设计,对 NMPs 的全面风险评估受到了阻碍。到目前为止,大多数研究都使用聚苯乙烯(PS)球作为可用材料,尽管这种聚合物类型仅占总塑料产量的约 7%。不同大小的颗粒、不同的浓度和孵育时间,以及不同的生物模型已经被使用,产生的数据集几乎无法进行比较。NMPs 的关键物理化学性质,如表面(电荷、极性、化学反应性)、补充添加剂和吸附化学物质,在研究中被广泛排除在外,尽管特别是 NMPs 的表面决定了与细胞膜的相互作用。在本文中,我们概述了在进行 NMPs 风险评估时应考虑的关键参数,包括新型参考材料,考虑到表面改性(例如,反映风化过程),以及 NMPs 作为(致病)微生物的基质和/或载体的可能作用。此外,我们还对生物模型系统提出了建议,以评估即时毒性、长期影响以及 NMPs 穿透生物屏障的潜力。我们相信,标准化参考材料和实验参数以及(纳米)颗粒采样和分析方面的技术创新是成功实现 NMPs 人类健康风险评估的先决条件。

相似文献

1
Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible.
Int J Environ Res Public Health. 2020 Nov 27;17(23):8832. doi: 10.3390/ijerph17238832.
3
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
4
A Children's Health Perspective on Nano- and Microplastics.
Environ Health Perspect. 2022 Jan;130(1):15001. doi: 10.1289/EHP9086. Epub 2022 Jan 26.
5
Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans.
NanoImpact. 2023 Jan;29:100441. doi: 10.1016/j.impact.2022.100441. Epub 2022 Nov 24.
6
Tracking Nano- and Microplastics Accumulation and Egestion in a Marine Copepod by Novel Fluorescent AIEgens: Kinetic Modeling of the Rhythm Behavior.
Environ Sci Technol. 2023 Dec 12;57(49):20761-20772. doi: 10.1021/acs.est.3c04726. Epub 2023 Nov 29.
7
Characterisation of nanoplastics during the degradation of polystyrene.
Chemosphere. 2016 Feb;145:265-8. doi: 10.1016/j.chemosphere.2015.11.078. Epub 2015 Dec 11.
8
Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro.
Chemosphere. 2024 May;355:141813. doi: 10.1016/j.chemosphere.2024.141813. Epub 2024 Apr 3.
9
Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma.
J Hazard Mater. 2021 Mar 5;405:124207. doi: 10.1016/j.jhazmat.2020.124207. Epub 2020 Oct 15.
10
Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.
Environ Pollut. 2019 Dec;255(Pt 2):113300. doi: 10.1016/j.envpol.2019.113300. Epub 2019 Oct 2.

引用本文的文献

1
From Harm to Hope: Tackling Microplastics' Perils with Recycling Innovation.
Molecules. 2025 Jun 10;30(12):2535. doi: 10.3390/molecules30122535.
2
Microplastics in aquatic systems: A comprehensive review of its distribution, environmental interactions, and health risks.
Environ Sci Pollut Res Int. 2025 Jan;32(1):56-88. doi: 10.1007/s11356-024-35741-1. Epub 2024 Dec 13.
3
Towards a risk assessment framework for micro- and nanoplastic particles for human health.
Part Fibre Toxicol. 2024 Nov 29;21(1):48. doi: 10.1186/s12989-024-00602-9.
6
Advancing Evaluation of Microplastics Thresholds to Inform Water Treatment Needs and Risks.
Environ Health (Wash). 2024 Mar 12;2(7):441-452. doi: 10.1021/envhealth.3c00174. eCollection 2024 Jul 19.
7
Nominally identical microplastic models differ greatly in their particle-cell interactions.
Nat Commun. 2024 Jan 31;15(1):922. doi: 10.1038/s41467-024-45281-4.
8
Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials.
Eco Environ Health. 2022 Nov 15;1(3):181-197. doi: 10.1016/j.eehl.2022.10.001. eCollection 2022 Sep.
10
A promising RNA nanotechnology in clinical therapeutics: a future perspective narrative review.
Future Sci OA. 2023 Jul 18;9(8):FSO883. doi: 10.2144/fsoa-2023-0067. eCollection 2023 Sep.

本文引用的文献

1
Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation.
Nat Food. 2020 Nov;1(11):746-754. doi: 10.1038/s43016-020-00171-y. Epub 2020 Oct 19.
2
Micro- and nanoplastics - current state of knowledge with the focus on oral uptake and toxicity.
Nanoscale Adv. 2020 Sep 2;2(10):4350-4367. doi: 10.1039/d0na00539h. eCollection 2020 Oct 13.
3
Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives.
J Hazard Mater. 2021 Mar 5;405:123913. doi: 10.1016/j.jhazmat.2020.123913. Epub 2020 Sep 16.
4
Uptake and cellular effects of PE, PP, PET and PVC microplastic particles.
Toxicol In Vitro. 2021 Feb;70:105021. doi: 10.1016/j.tiv.2020.105021. Epub 2020 Oct 10.
5
Microplastic-associated biofilms in lentic Italian ecosystems.
Water Res. 2020 Dec 15;187:116429. doi: 10.1016/j.watres.2020.116429. Epub 2020 Sep 15.
6
Marine Plastic Debris: A New Surface for Microbial Colonization.
Environ Sci Technol. 2020 Oct 6;54(19):11657-11672. doi: 10.1021/acs.est.0c02305. Epub 2020 Sep 15.
7
Surface Charge-Dependent Cytotoxicity of Plastic Nanoparticles in Alveolar Cells under Cyclic Stretches.
Nano Lett. 2020 Oct 14;20(10):7168-7176. doi: 10.1021/acs.nanolett.0c02463. Epub 2020 Sep 10.
8
Contribution of mast cells in irritant-induced airway epithelial barrier impairment .
Toxicol Ind Health. 2020 Oct;36(10):823-834. doi: 10.1177/0748233720948771. Epub 2020 Aug 25.
9
Microplastic contamination of drinking water: A systematic review.
PLoS One. 2020 Jul 31;15(7):e0236838. doi: 10.1371/journal.pone.0236838. eCollection 2020.
10
Microplastics in the environment: Interactions with microbes and chemical contaminants.
Sci Total Environ. 2020 Nov 15;743:140518. doi: 10.1016/j.scitotenv.2020.140518. Epub 2020 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验