Doctoral Studies in Natural and Technical Sciences (SPL 44), University of Vienna, Austria.
Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Vienna, Austria.
FEBS J. 2021 Sep;288(17):5010-5020. doi: 10.1111/febs.15651. Epub 2020 Dec 14.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic coronavirus disease 2019 (COVID-19) that exhibits an overwhelming contagious capacity over other human coronaviruses (HCoVs). This structural snapshot describes the structural bases underlying the pandemic capacity of SARS-CoV-2 and explains its fast motion over respiratory epithelia that allow its rapid cellular entry. Based on notable viral spike (S) protein features, we propose that the flat sialic acid-binding domain at the N-terminal domain (NTD) of the S1 subunit leads to more effective first contact and interaction with the sialic acid layer over the epithelium, and this, in turn, allows faster viral 'surfing' of the epithelium and receptor scanning by SARS-CoV-2. Angiotensin-converting enzyme 2 (ACE-2) protein on the epithelial surface is the primary entry receptor for SARS-CoV-2, and protein-protein interaction assays demonstrate high-affinity binding of the spike protein (S protein) to ACE-2. To date, no high-frequency mutations were detected at the C-terminal domain of the S1 subunit in the S protein, where the receptor-binding domain (RBD) is located. Tight binding to ACE-2 by a conserved viral RBD suggests the ACE2-RBD interaction is likely optimal. Moreover, the viral S subunit contains a cleavage site for furin and other proteases, which accelerates cell entry by SARS-CoV-2. The model proposed here describes a structural basis for the accelerated host cell entry by SARS-CoV-2 relative to other HCoVs and also discusses emerging hypotheses that are likely to contribute to the development of antiviral strategies to combat the pandemic capacity of SARS-CoV-2.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)大流行的病原体,它对其他人类冠状病毒(HCoVs)表现出压倒性的传染性。这个结构快照描述了 SARS-CoV-2 大流行能力的结构基础,并解释了它在呼吸道上皮细胞上的快速运动,使其能够快速进入细胞。基于显著的病毒刺突(S)蛋白特征,我们提出 S1 亚基 N 端结构域(NTD)上平坦的唾液酸结合域导致与上皮细胞上的唾液酸层更有效的首次接触和相互作用,这反过来又允许更快的病毒“冲浪”和 SARS-CoV-2 受体扫描。上皮细胞表面的血管紧张素转换酶 2(ACE-2)蛋白是 SARS-CoV-2 的主要进入受体,蛋白-蛋白相互作用实验表明,刺突蛋白(S 蛋白)与 ACE-2 具有高亲和力结合。迄今为止,在 S 蛋白的 S1 亚基的 C 端结构域中,没有检测到高频突变,而受体结合域(RBD)位于该结构域。SARS-CoV-2 通过保守的病毒 RBD 与 ACE-2 紧密结合,表明 ACE2-RBD 相互作用可能是最佳的。此外,病毒 S 亚基包含一个用于弗林和其他蛋白酶的切割位点,这加速了 SARS-CoV-2 的细胞进入。这里提出的模型描述了 SARS-CoV-2 相对于其他 HCoVs 加速宿主细胞进入的结构基础,并讨论了可能有助于开发抗病毒策略以对抗 SARS-CoV-2 大流行能力的新兴假说。