Suppr超能文献

心血管疾病中的系统生物学:一种多组学方法。

Systems biology in cardiovascular disease: a multiomics approach.

作者信息

Joshi Abhishek, Rienks Marieke, Theofilatos Konstantinos, Mayr Manuel

机构信息

King's British Heart Foundation Centre, King's College London, London, UK.

Bart's Heart Centre, St. Bartholomew's Hospital, London, UK.

出版信息

Nat Rev Cardiol. 2021 May;18(5):313-330. doi: 10.1038/s41569-020-00477-1. Epub 2020 Dec 18.

Abstract

Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for analysing these data but must be applied with an understanding of the relevant biological and computational theories. Through applying these techniques to omics data, systems biology addresses the problems posed by the complex organization of biological processes. In this Review, we describe the techniques and sources of omics data, outline network theory, and highlight exemplars of novel approaches that combine gene regulatory and co-expression networks, proteomics, metabolomics, lipidomics and phenomics with informatics techniques to provide new insights into cardiovascular disease. The use of systems approaches will become necessary to integrate data from more than one omic technique. Although understanding the interactions between different omics data requires increasingly complex concepts and methods, we argue that hypothesis-driven investigations and independent validation must still accompany these novel systems biology approaches to realize their full potential.

摘要

组学技术生成了大量的多维数据,这些数据适合通过新的信息学方法以及传统统计方法进行分析。包括网络分析和机器学习在内的系统理论,非常适合分析这些数据,但必须在理解相关生物学和计算理论的基础上加以应用。通过将这些技术应用于组学数据,系统生物学解决了生物过程复杂组织所带来的问题。在本综述中,我们描述了组学数据的技术和来源,概述了网络理论,并重点介绍了将基因调控和共表达网络、蛋白质组学、代谢组学、脂质组学和表型组学与信息学技术相结合的新方法实例,以提供对心血管疾病的新见解。使用系统方法对于整合来自多种组学技术的数据将变得必要。尽管理解不同组学数据之间的相互作用需要越来越复杂的概念和方法,但我们认为假设驱动的研究和独立验证仍必须伴随这些新颖的系统生物学方法,以充分发挥其潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验