Suppr超能文献

靶向 Braf/Mapk 通路可挽救 CoQ 缺乏症肾病中足细胞的脂质过氧化。

Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease.

机构信息

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

出版信息

J Clin Invest. 2021 Mar 1;131(5). doi: 10.1172/JCI141380.

Abstract

Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.

摘要

影响线粒体辅酶 Q(CoQ)生物合成的突变会导致肾脏衰竭,这是由于足细胞的选择性丧失,足细胞是肾脏过滤的重要细胞。奇怪的是,尽管线粒体含量较高,但在疾病早期,相邻的肾小管上皮细胞却幸免于难。我们试图阐明 CoQ 的非典型、细胞特异性作用,而不依赖于电子传递链(ETC)。在这里,我们证明了由于 Pdss2 酶在足细胞中的缺陷导致 CoQ 耗竭,会导致多不饱和脂肪酸(PUFA)代谢和 Braf/Mapk 途径的紊乱,而不是 ETC 功能障碍。患有肾病综合征和全身 CoQ 缺乏症的 Pdss2kd/kd 小鼠肾脏的单核 RNA-Seq 鉴定出足细胞中 Braf/Mapk 途径的特定扰动。用 GDC-0879(一种靶向 Braf/Mapk 的化合物)治疗可改善 Pdss2kd/kd 小鼠的肾脏疾病。在 Pdss2 耗尽的足细胞中的机制研究揭示了先前未知的 PUFA 代谢紊乱,在体内得到了证实。Gpx4 是一种可防止 PUFA 介导的脂质过氧化的酶,在疾病中升高,并在 GDC-0879 治疗后恢复。通过揭示组织中 GPX4 和 Braf/Mapk 途径基因表达的模式,我们证明了 CoQ 在足细胞中具有更广泛的人类疾病相关性。我们的研究揭示了 CoQ 在足细胞中独立于 ETC 的作用,并指出 Braf/Mapk 是治疗肾脏疾病的候选途径。

相似文献

2
CoQ supplementation rescues nephrotic syndrome through normalization of HS oxidation pathway.
Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3708-3722. doi: 10.1016/j.bbadis.2018.09.002. Epub 2018 Sep 6.
3
Coenzyme Q biosynthesis in health and disease.
Biochim Biophys Acta. 2016 Aug;1857(8):1079-1085. doi: 10.1016/j.bbabio.2016.03.036. Epub 2016 Apr 7.
4
Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.
PLoS Genet. 2008 Apr 25;4(4):e1000061. doi: 10.1371/journal.pgen.1000061.
6
Coenzyme Q deficiencies: pathways in yeast and humans.
Essays Biochem. 2018 Jul 20;62(3):361-376. doi: 10.1042/EBC20170106.
7
GDC-0879, a BRAF Inhibitor, Protects Kidney Podocytes from Death.
Cell Chem Biol. 2018 Feb 15;25(2):175-184.e4. doi: 10.1016/j.chembiol.2017.11.006. Epub 2017 Dec 14.
8
Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function.
J Lipid Res. 2019 Jul;60(7):1293-1310. doi: 10.1194/jlr.M093534. Epub 2019 May 2.
9
Secondary CoQ deficiency, bioenergetics unbalance in disease and aging.
Biofactors. 2021 Jul;47(4):551-569. doi: 10.1002/biof.1733. Epub 2021 Apr 20.
10
4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease.
Cell Rep. 2024 May 28;43(5):114148. doi: 10.1016/j.celrep.2024.114148. Epub 2024 May 1.

引用本文的文献

1
Ferroptosis in Cancer and Inflammatory Diseases: Mechanisms and Therapeutic Implications.
MedComm (2020). 2025 Sep 3;6(9):e70349. doi: 10.1002/mco2.70349. eCollection 2025 Sep.
3
Metabolic reprogramming by endothelial ANGPTL4 depletion protects against diabetic kidney disease.
bioRxiv. 2025 May 12:2025.05.08.652142. doi: 10.1101/2025.05.08.652142.
7
Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease.
Int J Mol Sci. 2024 Aug 2;25(15):8465. doi: 10.3390/ijms25158465.
8
Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity.
JCI Insight. 2024 Aug 8;9(18):e182534. doi: 10.1172/jci.insight.182534.

本文引用的文献

1
Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression.
J Clin Invest. 2020 Oct 1;130(10):5523-5535. doi: 10.1172/JCI140155.
2
Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15874-15883. doi: 10.1073/pnas.2005477117. Epub 2020 Jun 22.
3
ADCK4 Deficiency Destabilizes the Coenzyme Q Complex, Which Is Rescued by 2,4-Dihydroxybenzoic Acid Treatment.
J Am Soc Nephrol. 2020 Jun;31(6):1191-1211. doi: 10.1681/ASN.2019070756. Epub 2020 May 7.
4
A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering.
Cell. 2019 Nov 14;179(5):1222-1238.e17. doi: 10.1016/j.cell.2019.10.032.
5
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.
Nature. 2019 Nov;575(7784):688-692. doi: 10.1038/s41586-019-1705-2. Epub 2019 Oct 21.
6
FSP1 is a glutathione-independent ferroptosis suppressor.
Nature. 2019 Nov;575(7784):693-698. doi: 10.1038/s41586-019-1707-0. Epub 2019 Oct 21.
7
Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy.
Cell. 2019 Jul 25;178(3):521-535.e23. doi: 10.1016/j.cell.2019.07.002.
9
Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions.
Kidney Int. 2019 Jul;96(1):80-93. doi: 10.1016/j.kint.2019.01.037. Epub 2019 Feb 27.
10
MAPK/ERK Signaling in Regulation of Renal Differentiation.
Int J Mol Sci. 2019 Apr 10;20(7):1779. doi: 10.3390/ijms20071779.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验