Suppr超能文献

靶向“不可成药”的 MYCN 致癌转录因子:克服先前的障碍以影响儿童癌症。

Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers.

机构信息

Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Wistar Institute, Philadelphia, Pennsylvania.

出版信息

Cancer Res. 2021 Apr 1;81(7):1627-1632. doi: 10.1158/0008-5472.CAN-20-3108. Epub 2021 Jan 28.

Abstract

Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance , the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.

摘要

有效治疗儿科实体肿瘤一直受到目前“不可成药”的驱动转录因子的阻碍。为了提高疗效,同时降低治疗的毒性,有必要开发能够直接抑制或降解这些难以捉摸的靶点的新型药物。小儿神经源性肿瘤中的 MYCN,包括神经母细胞瘤和髓母细胞瘤,就是一个典型的例子。由于 MYCN 与 MYC 相似,MYC 家族蛋白在单体形式下结构不完整,缺乏对 MYCN 相互作用蛋白的了解和测试其相关性的能力,无法获得 MYCN 蛋白复合物的结构信息,以及使用传统小分子抑制蛋白-蛋白或蛋白-DNA 相互作用的挑战,因此直接针对 MYCN 的尝试都失败了。然而,基于在所有这些方面的科学和技术进步,现在有希望直接针对 MYCN。在这里,我们讨论了之前的挑战以及对直接针对这个“不可成药”转录因子重新产生乐观情绪的原因,我们希望这将为儿科癌症患者带来更好的治疗效果,并为针对调节基因转录的驱动致癌蛋白的目标建立框架。

相似文献

1
Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers.
Cancer Res. 2021 Apr 1;81(7):1627-1632. doi: 10.1158/0008-5472.CAN-20-3108. Epub 2021 Jan 28.
2
Drugging MYCN Oncogenic Signaling through the MYCN-PA2G4 Binding Interface.
Cancer Res. 2019 Nov 1;79(21):5652-5667. doi: 10.1158/0008-5472.CAN-19-1112. Epub 2019 Sep 9.
3
Direct Targeting of Gene Amplification by Site-Specific DNA Alkylation in Neuroblastoma.
Cancer Res. 2019 Feb 15;79(4):830-840. doi: 10.1158/0008-5472.CAN-18-1198. Epub 2018 Dec 24.
4
A Novel MYCN-Specific Antigene Oligonucleotide Deregulates Mitochondria and Inhibits Tumor Growth in MYCN-Amplified Neuroblastoma.
Cancer Res. 2019 Dec 15;79(24):6166-6177. doi: 10.1158/0008-5472.CAN-19-0008. Epub 2019 Oct 15.
5
Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid.
Nucleic Acid Ther. 2020 Aug;30(4):237-248. doi: 10.1089/nat.2019.0831. Epub 2020 Apr 2.
6
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent.
Cell Death Dis. 2018 Feb 14;9(2):220. doi: 10.1038/s41419-018-0295-5.
7
Polo-like Kinase-1 Regulates Myc Stabilization and Activates a Feedforward Circuit Promoting Tumor Cell Survival.
Mol Cell. 2016 Nov 3;64(3):493-506. doi: 10.1016/j.molcel.2016.09.016. Epub 2016 Oct 20.
8
Phenotypic screening in cancer drug discovery - past, present and future.
Nat Rev Drug Discov. 2014 Aug;13(8):588-602. doi: 10.1038/nrd4366. Epub 2014 Jul 18.
9
DNp73 enhances tumor progression and immune evasion in multiple myeloma by targeting the MYC and MYCN pathways.
Front Immunol. 2024 Sep 24;15:1470328. doi: 10.3389/fimmu.2024.1470328. eCollection 2024.
10
Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene.
Nucleic Acids Res. 2021 Aug 20;49(14):7856-7869. doi: 10.1093/nar/gkab594.

引用本文的文献

1
A Small Molecule Selectively Targets N-Myc to Suppress Neuroblastoma Cancer Progression.
Int J Biol Sci. 2025 Jul 28;21(11):4895-4907. doi: 10.7150/ijbs.97195. eCollection 2025.
2
PLK4 as a Key Regulator of Neuroblastoma Differentiation and a Promising Therapeutic Target.
Int J Biol Sci. 2025 Jul 28;21(11):4979-4996. doi: 10.7150/ijbs.111449. eCollection 2025.
3
eNRSA: a faster and more powerful approach for nascent transcriptome analysis.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf071.
5
MYCN as an oncogene in pediatric brain tumors.
Front Oncol. 2025 Apr 29;15:1584978. doi: 10.3389/fonc.2025.1584978. eCollection 2025.
7
Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable?
Genes Dis. 2023 Oct 27;12(2):101156. doi: 10.1016/j.gendis.2023.101156. eCollection 2025 Mar.
8
Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders.
Cell Chem Biol. 2025 Feb 20;32(2):352-362.e10. doi: 10.1016/j.chembiol.2024.12.006. Epub 2025 Jan 7.
9
IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation.
J Exp Med. 2024 Nov 4;221(11). doi: 10.1084/jem.20231832. Epub 2024 Oct 29.
10
Targeting the ubiquitin-proteasome system: a novel therapeutic strategy for neuroblastoma.
Front Oncol. 2024 Sep 26;14:1443256. doi: 10.3389/fonc.2024.1443256. eCollection 2024.

本文引用的文献

1
Partial Replacement of Nucleosomal DNA with Human FACT Induces Dynamic Exposure and Acetylation of Histone H3 N-Terminal Tails.
iScience. 2020 Oct 6;23(10):101641. doi: 10.1016/j.isci.2020.101641. eCollection 2020 Oct 23.
2
PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase.
Nat Chem Biol. 2020 Nov;16(11):1179-1188. doi: 10.1038/s41589-020-00652-y. Epub 2020 Sep 28.
3
General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24269-24273. doi: 10.1073/pnas.2009707117. Epub 2020 Sep 10.
4
Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource.
Acta Neuropathol. 2020 Aug;140(2):209-225. doi: 10.1007/s00401-020-02171-5. Epub 2020 Jun 10.
5
Limited antitumor activity of combined BET and MEK inhibition in neuroblastoma.
Pediatr Blood Cancer. 2020 Jun;67(6):e28267. doi: 10.1002/pbc.28267. Epub 2020 Apr 19.
6
Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery.
Cell. 2020 Apr 2;181(1):102-114. doi: 10.1016/j.cell.2019.11.031. Epub 2020 Jan 16.
7
FACT caught in the act of manipulating the nucleosome.
Nature. 2020 Jan;577(7790):426-431. doi: 10.1038/s41586-019-1820-0. Epub 2019 Nov 27.
8
Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu.
Nat Methods. 2020 Jan;17(1):79-85. doi: 10.1038/s41592-019-0637-y. Epub 2019 Nov 25.
9
Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design.
Cell Rep. 2019 Nov 5;29(6):1675-1689.e9. doi: 10.1016/j.celrep.2019.09.071.
10
Multiple direct interactions of TBP with the MYC oncoprotein.
Nat Struct Mol Biol. 2019 Nov;26(11):1035-1043. doi: 10.1038/s41594-019-0321-z. Epub 2019 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验