Suppr超能文献

秀丽隐杆线虫中神经系统特异性亚核细胞器。

A nervous system-specific subnuclear organelle in Caenorhabditis elegans.

机构信息

Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.

出版信息

Genetics. 2021 Mar 3;217(1):1-17. doi: 10.1093/genetics/iyaa016.

Abstract

We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.

摘要

我们在这里描述了线虫秀丽隐杆线虫中分离的核亚细胞器,我们将其称为 NUN(神经特异性核)体。与其他先前描述的核亚细胞器不同,NUN 体高度细胞类型特异性。在完全成熟的动物中,仅在神经元、神经胶质和类神经元细胞的核中观察到 4-10 个 NUN 体,而不在其他体细胞类型中观察到。基于共定位和遗传功能丧失研究,NUN 体与其他先前描述的核亚细胞器(如核仁、剪接斑点、副核仁、多梳体、早幼粒细胞白血病体、宝石体、应激诱导核体或断片体)无关。NUN 体在细胞周期退出后立即形成,在明显的神经元分化之前,并且不受控制许多神经元特征其他方面的转录因子的遗传消除的影响。在一个不寻常的神经元类群中,即管相关神经元,NUN 体在幼虫发育过程中进行重塑,并且这种重塑依赖于 Prd 型同源盒基因 ceh-10。总之,我们在这里描述了一种新型的核亚细胞器,其细胞类型特异性提出了一个有趣的问题,即核内的什么生化过程使所有与神经系统相关的细胞与神经系统外的细胞不同。

相似文献

1
A nervous system-specific subnuclear organelle in Caenorhabditis elegans.
Genetics. 2021 Mar 3;217(1):1-17. doi: 10.1093/genetics/iyaa016.
5
Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.
Dev Biol. 2017 Apr 1;424(1):90-103. doi: 10.1016/j.ydbio.2017.02.005. Epub 2017 Feb 17.
7
Intracellular trafficking of LET-756, a fibroblast growth factor of C. elegans, is controlled by a balance of export and nuclear signals.
Exp Cell Res. 2006 May 15;312(9):1484-95. doi: 10.1016/j.yexcr.2006.01.012. Epub 2006 Feb 20.
9
Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny.
Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e374. doi: 10.1002/wdev.374. Epub 2020 Feb 3.
10
Regulation of C. elegans neuronal differentiation by the ZEB-family factor ZAG-1 and the NK-2 homeodomain factor CEH-28.
PLoS One. 2014 Dec 4;9(12):e113893. doi: 10.1371/journal.pone.0113893. eCollection 2014.

引用本文的文献

3
Timing of TORC1 inhibition dictates Pol III involvement in longevity.
Life Sci Alliance. 2024 May 13;7(7). doi: 10.26508/lsa.202402735. Print 2024 Jul.
4
RNA granules: functional compartments or incidental condensates?
Genes Dev. 2023 May 1;37(9-10):354-376. doi: 10.1101/gad.350518.123. Epub 2023 May 3.
6
Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles.
Front Mol Biosci. 2022 Sep 20;9:998363. doi: 10.3389/fmolb.2022.998363. eCollection 2022.
7
Methods for analyzing neuronal structure and activity in Caenorhabditis elegans.
Genetics. 2021 Aug 9;218(4). doi: 10.1093/genetics/iyab072.
8
Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans.
Development. 2021 Jun 1;148(11). doi: 10.1242/dev.199224. Epub 2021 Jun 8.

本文引用的文献

2
Robust and efficient gene regulation through localized nuclear microenvironments.
Development. 2020 Oct 5;147(19):dev161430. doi: 10.1242/dev.161430.
3
Nucleated transcriptional condensates amplify gene expression.
Nat Cell Biol. 2020 Oct;22(10):1187-1196. doi: 10.1038/s41556-020-00578-6. Epub 2020 Sep 14.
4
Nucleolar RNA polymerase II drives ribosome biogenesis.
Nature. 2020 Sep;585(7824):298-302. doi: 10.1038/s41586-020-2497-0. Epub 2020 Jul 15.
5
Unlike Drosophila elav, the elav orthologue is not panneuronally expressed.
MicroPubl Biol. 2019 Oct 30;2019. doi: 10.17912/micropub.biology.000189.
7
Phase separation directs ubiquitination of gene-body nucleosomes.
Nature. 2020 Mar;579(7800):592-597. doi: 10.1038/s41586-020-2097-z. Epub 2020 Mar 11.
8
Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation.
Mol Cell. 2020 Apr 16;78(2):236-249.e7. doi: 10.1016/j.molcel.2020.02.005. Epub 2020 Feb 25.
9
Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny.
Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e374. doi: 10.1002/wdev.374. Epub 2020 Feb 3.
10
Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation.
Nat Commun. 2020 Jan 14;11(1):270. doi: 10.1038/s41467-019-14087-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验