Suppr超能文献

从真菌培养蚂蚁的真菌园产生抗真菌物质,抑制专门的寄生虫。

from Fungus Gardens of Fungus-Growing Ants Produces Antifungals That Inhibit the Specialized Parasite .

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Appl Environ Microbiol. 2021 Jun 25;87(14):e0017821. doi: 10.1128/AEM.00178-21.

Abstract

Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants' fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus . Here, we examine the potential role of spp. that occur within ant fungus gardens in inhibiting We isolated members of the bacterial genera and from 50% of the 52 colonies sampled, indicating that members of the family are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus garden-associated indicated that isolates with strong inhibition all belonged to the genus and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit but, at equivalent concentrations, not spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies. Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, . The ants take multiple approaches, including weeding their fungus gardens to remove spores, as well as harboring spp., bacteria that produce antifungals that inhibit In addition, a genus of bacteria commonly found in fungus gardens, , is known to produce secondary metabolites that inhibit spp. In this study, we isolated spp. from fungus-growing ants, assessed the isolates' ability to inhibit spp., and identified two compounds responsible for inhibition. Our findings suggest that spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite .

摘要

在动物相关的微生物组中,特定微生物类群的功能作用通常尚未明确。在这里,我们利用真菌养殖蚂蚁系统(一种微生物共生的模型)来确定存在于蚂蚁真菌园中关键细菌类群的潜在防御作用。真菌园是蚂蚁的外部消化系统,其中互惠共生真菌属将植物基质转化为蚂蚁的能量。真菌园是专门寄生真菌属的宿主。在这里,我们研究了存在于蚂蚁真菌园中属的 spp. 抑制的潜在作用。我们从 52 个样本中的 50%的蚂蚁群体中分离出了属和属的细菌成员,这表明属的成员是各种真菌养殖蚂蚁属的真菌园中常见的居民。通过抗菌抑制生物测定,我们发现 32 个分离株中有 28 个至少抑制了一个抑制带大于 1cm 的菌株。对与真菌园相关的的基因组评估表明,具有强抑制作用的分离株都属于属,并且含有编码产生两种抗真菌剂的生物合成基因簇:burkholdine1213 和吡咯菌素。培养分离株的有机提取物证实,这些化合物负责抑制的抗真菌活性,但在等效浓度下,不能抑制属的 spp. 总的来说,这些新发现,结合以前的证据,表明真菌园微生物组的成员在维持真菌养殖蚂蚁群体的健康和功能方面发挥着重要作用。许多生物体与微生物合作,以保护自己免受寄生虫和病原体的侵害。真菌养殖蚂蚁必须保护属的真菌共生体,为蚂蚁提供营养,免受专门的真菌寄生虫属的侵害。蚂蚁采取了多种方法,包括除草它们的真菌花园以去除孢子,以及容纳属的 spp. 细菌,产生抑制属的抗真菌剂。此外,通常在真菌园中发现的一个细菌属,属,已知产生抑制属的 spp. 的次生代谢物。在这项研究中,我们从真菌养殖蚂蚁中分离出了 spp. ,评估了分离株抑制属的 spp. 的能力,并确定了两种负责抑制的化合物。我们的研究结果表明,属的 spp. 通常存在于真菌园中,这为真菌养殖蚂蚁系统中抑制专门寄生虫的生长增加了另一种可能的机制。

相似文献

1
from Fungus Gardens of Fungus-Growing Ants Produces Antifungals That Inhibit the Specialized Parasite .
Appl Environ Microbiol. 2021 Jun 25;87(14):e0017821. doi: 10.1128/AEM.00178-21.
2
Chemical warfare between fungus-growing ants and their pathogens.
Curr Opin Chem Biol. 2020 Dec;59:172-181. doi: 10.1016/j.cbpa.2020.08.001. Epub 2020 Sep 17.
3
Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System.
mBio. 2020 Sep 15;11(5):e02146-20. doi: 10.1128/mBio.02146-20.
4
Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis.
Proc Biol Sci. 2007 Aug 22;274(1621):1971-8. doi: 10.1098/rspb.2007.0431.
5
Broad Escovopsis-inhibition activity of Pseudonocardia associated with Trachymyrmex ants.
Environ Microbiol Rep. 2014 Aug;6(4):339-45. doi: 10.1111/1758-2229.12132. Epub 2014 Jan 8.
6
Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17805-10. doi: 10.1073/pnas.0904827106. Epub 2009 Sep 22.
7
Interactions among , Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis.
J Fungi (Basel). 2021 Nov 25;7(12):1007. doi: 10.3390/jof7121007.
8
Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants.
BMC Microbiol. 2018 Oct 10;18(1):130. doi: 10.1186/s12866-018-1265-x.
9
Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2213096119. doi: 10.1073/pnas.2213096119. Epub 2022 Dec 12.
10
Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants.
Antonie Van Leeuwenhoek. 2017 Apr;110(4):593-605. doi: 10.1007/s10482-016-0826-y. Epub 2016 Dec 31.

引用本文的文献

2
Dissecting the inhibitory activity of Burkholderia orbicola against Gram-positive and - negative multidrug-resistant bacteria.
PLoS One. 2025 Jun 30;20(6):e0326906. doi: 10.1371/journal.pone.0326906. eCollection 2025.
3
The fungus (: ): a critical review of its biology and parasitism of attine ant colonies.
Front Fungal Biol. 2025 Mar 18;5:1486601. doi: 10.3389/ffunb.2024.1486601. eCollection 2024.
4
Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens.
Proc Biol Sci. 2024 Apr 30;291(2021):20232658. doi: 10.1098/rspb.2023.2658. Epub 2024 Apr 17.
7
Symbiotic Bacteria Regulating Insect-Insect/Fungus/Virus Mutualism.
Insects. 2023 Sep 3;14(9):741. doi: 10.3390/insects14090741.
8
Fungal Hyphosphere Microbiomes Are Distinct from Surrounding Substrates and Show Consistent Association Patterns.
Microbiol Spectr. 2023 Mar 20;11(2):e0470822. doi: 10.1128/spectrum.04708-22.
9
Environments and Hosts Structure the Bacterial Microbiomes of Fungus-Gardening Ants and their Symbiotic Fungus Gardens.
Microb Ecol. 2023 Aug;86(2):1374-1392. doi: 10.1007/s00248-022-02138-x. Epub 2022 Nov 7.
10
Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them.
Antibiotics (Basel). 2022 Feb 2;11(2):195. doi: 10.3390/antibiotics11020195.

本文引用的文献

1
clinker & clustermap.js: automatic generation of gene cluster comparison figures.
Bioinformatics. 2021 Aug 25;37(16):2473-2475. doi: 10.1093/bioinformatics/btab007.
2
Metagenomics Reveals Diet-Specific Specialization of Bacterial Communities in Fungus Gardens of Grass- and Dicot-Cutter Ants.
Front Microbiol. 2020 Sep 24;11:570770. doi: 10.3389/fmicb.2020.570770. eCollection 2020.
3
Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System.
mBio. 2020 Sep 15;11(5):e02146-20. doi: 10.1128/mBio.02146-20.
6
A computational framework to explore large-scale biosynthetic diversity.
Nat Chem Biol. 2020 Jan;16(1):60-68. doi: 10.1038/s41589-019-0400-9. Epub 2019 Nov 25.
7
Versatile and Dynamic Symbioses Between Insects and Bacteria.
Annu Rev Entomol. 2020 Jan 7;65:145-170. doi: 10.1146/annurev-ento-011019-025025. Epub 2019 Oct 8.
8
BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650. doi: 10.1371/journal.pcbi.1006650. eCollection 2019 Apr.
9
Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10720-10725. doi: 10.1073/pnas.1809332115. Epub 2018 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验