Suppr超能文献

通过产电菌属的铁到微生物的直接电子转移导致不锈钢腐蚀。

Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species.

机构信息

Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China.

State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China.

出版信息

ISME J. 2021 Oct;15(10):3084-3093. doi: 10.1038/s41396-021-00990-2. Epub 2021 May 10.

Abstract

Microbial corrosion of iron-based materials is a substantial economic problem. A mechanistic understanding is required to develop mitigation strategies, but previous mechanistic studies have been limited to investigations with relatively pure Fe(0), which is not a common structural material. We report here that the mechanism for microbial corrosion of stainless steel, the metal of choice for many actual applications, can be significantly different from that for Fe(0). Although H is often an intermediary electron carrier between the metal and microbes during Fe(0) corrosion, we found that H is not abiotically produced from stainless steel, making this corrosion mechanism unlikely. Geobacter sulfurreducens and Geobacter metallireducens, electrotrophs that are known to directly accept electrons from other microbes or electrodes, extracted electrons from stainless steel via direct iron-to-microbe electron transfer. Genetic modification to prevent H consumption did not negatively impact on stainless steel corrosion. Corrosion was inhibited when genes for outer-surface cytochromes that are key electrical contacts were deleted. These results indicate that a common model of microbial Fe(0) corrosion by hydrogenase-positive microbes, in which H serves as an intermediary electron carrier between the metal surface and the microbe, may not apply to the microbial corrosion of stainless steel. However, direct iron-to-microbe electron transfer is a feasible route for stainless steel corrosion.

摘要

微生物引起的铁基材料腐蚀是一个重大的经济问题。为了制定缓解策略,需要深入了解其机理,但之前的机理研究仅限于对相对纯净的零价铁(一种不常见的结构材料)的研究。我们在此报告,不锈钢(许多实际应用的首选金属)的微生物腐蚀机理可能与零价铁有很大不同。尽管在零价铁腐蚀过程中 H 通常是金属和微生物之间的中间电子载体,但我们发现 H 不能从不锈钢中生物合成,这使得这种腐蚀机理不太可能发生。已知能够直接从其他微生物或电极接收电子的好氧菌 Geobacter sulfurreducens 和 Geobacter metallireducens 通过直接的铁到微生物电子转移从不锈钢中提取电子。阻止 H 消耗的基因修饰并没有对不锈钢腐蚀产生负面影响。当删除外表面细胞色素的基因(这些细胞色素是关键的电接触点)时,腐蚀被抑制。这些结果表明,对于由氢化酶阳性微生物引起的微生物零价铁腐蚀的常见模型,其中 H 作为金属表面和微生物之间的中间电子载体,可能不适用于不锈钢的微生物腐蚀。然而,直接的铁到微生物电子转移是不锈钢腐蚀的一种可行途径。

相似文献

1
Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species.
ISME J. 2021 Oct;15(10):3084-3093. doi: 10.1038/s41396-021-00990-2. Epub 2021 May 10.
2
Iron Corrosion via Direct Metal-Microbe Electron Transfer.
mBio. 2019 May 14;10(3):e00303-19. doi: 10.1128/mBio.00303-19.
3
Electrobiocorrosion by microbes without outer-surface cytochromes.
mLife. 2024 Mar 19;3(1):110-118. doi: 10.1002/mlf2.12111. eCollection 2024 Mar.
4
Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments.
Water Res. 2022 Jul 1;219:118553. doi: 10.1016/j.watres.2022.118553. Epub 2022 May 5.
5
H Is a Major Intermediate in Corrosion of Iron.
mBio. 2023 Apr 25;14(2):e0007623. doi: 10.1128/mbio.00076-23. Epub 2023 Feb 14.
6
Accelerated Microbial Corrosion by Magnetite and Electrically Conductive Pili through Direct Fe -to-Microbe Electron Transfer.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202309005. doi: 10.1002/anie.202309005. Epub 2023 Aug 10.
7
Cytochrome-mediated direct electron uptake from metallic iron by .
mLife. 2022 Nov 17;1(4):443-447. doi: 10.1002/mlf2.12044. eCollection 2022 Dec.
8
Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations.
Bioresour Technol. 2022 Feb;345:126553. doi: 10.1016/j.biortech.2021.126553. Epub 2021 Dec 11.
9
Microbial corrosion of metals: The corrosion microbiome.
Adv Microb Physiol. 2021;78:317-390. doi: 10.1016/bs.ampbs.2021.01.002. Epub 2021 Mar 2.
10
Enhanced corrosion of 2205 duplex stainless steel by Acetobacter aceti through synergistic electron transfer and organic acids acceleration.
Bioelectrochemistry. 2024 Jun;157:108665. doi: 10.1016/j.bioelechem.2024.108665. Epub 2024 Feb 10.

引用本文的文献

1
Effects of Sulphate-Reducing Bacteria Mixed-Species Biofilms on Microbiologically Influenced Corrosion.
Environ Microbiol. 2025 Aug;27(8):e70116. doi: 10.1111/1462-2920.70116.
2
Activated Carbon and Syntrophy Accelerate the Corrosion of Stainless Steel Under Strict Anaerobic Conditions by .
Microorganisms. 2025 May 30;13(6):1278. doi: 10.3390/microorganisms13061278.
5
The robustness of porin-cytochrome gene clusters from in extracellular electron transfer.
mBio. 2024 Sep 11;15(9):e0058024. doi: 10.1128/mbio.00580-24. Epub 2024 Aug 2.
7
Elucidating microbial iron corrosion mechanisms with a hydrogenase-deficient strain of .
mLife. 2024 Jun 28;3(2):269-276. doi: 10.1002/mlf2.12133. eCollection 2024 Jun.
8
Electrobiocorrosion by microbes without outer-surface cytochromes.
mLife. 2024 Mar 19;3(1):110-118. doi: 10.1002/mlf2.12111. eCollection 2024 Mar.
9
Cytochrome-mediated direct electron uptake from metallic iron by .
mLife. 2022 Nov 17;1(4):443-447. doi: 10.1002/mlf2.12044. eCollection 2022 Dec.
10
as a model microbe for the study of corrosion under sulfate-reducing conditions.
mLife. 2022 Mar 24;1(1):13-20. doi: 10.1002/mlf2.12018. eCollection 2022 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验