Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA.
Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY.
Diabetes. 2021 Aug;70(8):1857-1873. doi: 10.2337/db20-1119. Epub 2021 May 24.
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na and K channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
大脑现在被认为是对胰岛素敏感的组织;然而,外周循环中胰岛素浓度变化在大脑基因表达中的作用在很大程度上尚不清楚。在这里,我们对 3 个月大的雄性 C57BL/6 小鼠进行了 3 小时的高胰岛素-正常血糖钳夹实验。我们发现,与生理盐水输注对照组的结果相比,生理范围内外周胰岛素的增加调节了大脑中广泛的基因表达网络。胰岛素调节下丘脑(HTM)、海马体和伏隔核中的不同途径。胰岛素在 HTM 中表现出最显著的作用,调节多种与神经递质传递相关的基因,包括上调 GABA-A 受体、Na 和 K 通道和 SNARE 蛋白的多个亚基的表达;差异调节谷氨酸受体;并抑制多种神经肽。胰岛素还强烈调节 HTM 中的代谢基因,抑制糖酵解和戊糖磷酸途径中的基因,同时增加调节丙酮酸脱氢酶和长链脂肪酸酰基辅酶 A 和胆固醇生物合成的基因的表达,从而将碳底物从神经元和神经胶质功能和突触重塑所需的葡萄糖代谢重新定向到脂质代谢。此外,基于转录特征,这些基因表达的变化涉及神经元、星形胶质细胞、少突胶质细胞、小胶质细胞和内皮细胞。因此,外周胰岛素急性和有效地调节了涉及神经递质传递和大脑代谢的广泛基因表达网络。这些途径的失调可能对正常生理和糖尿病产生巨大影响。