Suppr超能文献

ROS 对自噬的全面调控:从诱导到成熟。

Full-coverage regulations of autophagy by ROS: from induction to maturation.

机构信息

Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China.

Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Autophagy. 2022 Jun;18(6):1240-1255. doi: 10.1080/15548627.2021.1984656. Epub 2021 Oct 18.

Abstract

Macroautophagy/autophagy is an evolutionarily well-conserved recycling process in response to stress conditions, including a burst of reactive oxygen species (ROS) production. High level of ROS attack key cellular macromolecules. Protein cysteinyl thiols or non-protein thiols as the major redox-sensitive targets thus constitute the first-line defense. Autophagy is unique, because it removes not only oxidized/damaged proteins but also bulky ROS-generating organelles (such as mitochondria and peroxisome) to restrict further ROS production. The oxidative regulations of autophagy occur in all processes of autophagy, from induction, phagophore nucleation, phagophore expansion, autophagosome maturation, cargo delivery to the lysosome, and finally to degradation of the cargo and recycling of the products, as well as autophagy gene transcription. Mechanically, these regulations are achieved through direct or indirect manners. Direct thiol oxidation of key proteins such as ATG4, ATM and TFEB are responsible for specific regulations in phagophore expansion, cargo recognition and autophagy gene transcription, respectively. Meanwhile, oxidation of certain redox-sensitive chaperone-like proteins (. PRDX family members and PARK7) may impair a nonspecifically local reducing environment in the phagophore membrane, and influence BECN1-involved phagophore nucleation and mitophagy recognition. However, ROS do exhibit some inhibitory effects on autophagy through direct oxidation of key autophagy regulators such as ATG3, ATG7 and SENP3 proteins. SQSTM1 provides an alternative antioxidant mechanism when autophagy is unavailable or impaired. However, it is yet to be unraveled how cells evolve to equip proteins with different redox susceptibility and in their correct subcellular positions, and how cells fine-tune autophagy machinery in response to different levels of ROS. AKT1/PKB: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATM: ATM serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; BH3: BCL2-homology-3; CAV1: caveolin 1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CTSB: cathepsin B; CTSL: cathepsin L; DAPK: death associated protein kinase; ER: endoplasmic reticulum; ETC: electron transport chain; GSH: glutathione; GSTP1: glutathione S-transferase pi 1; HO: hydrogen peroxide; HK2: hexokinase 2; KEAP1: kelch like ECH associated protein 1; MAMs: mitochondria-associated ER membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAPK8/JNK1: mitogen-activated protein kinase 8; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MCOLN1: mucolipin 1; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NFKB1: nuclear factor kappa B subunit 1; NOX: NADPH oxidase; O: superoxide radical anion; p-Ub: phosphorylated Ub; PARK7/DJ-1: Parkinsonism associated deglycase; PE: phosphatidylethanolamine; PEX5: peroxisomal biogenesis factor 5; PINK1: PTEN induced kinase 1; PPP3CA/calcineurin: protein phosphatase 3 catalytic subunit beta; PRDX: peroxiredoxin; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKD/PKD: protein kinase D; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SENP3: SUMO specific peptidase 3; SIRT1: sirtuin 1; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SUMO: small ubiquitin like modifier; TFEB: transcription factor EB; TRAF6: TNF receptor associated factor 6; TSC2: TSC complex subunit 2; TXN: thioredoxin; TXNRD1: thioredoxin reductase 1; TXNIP: thioredoxin interacting protein; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1.

摘要

自噬是一种对压力条件(包括活性氧物种(ROS)爆发)做出反应的进化上保守的循环过程。高水平的 ROS 攻击关键细胞大分子。蛋白质半胱氨酸硫醇或非蛋白质巯基作为主要的氧化还原敏感靶标,因此构成了第一道防线。自噬是独特的,因为它不仅去除了氧化/受损的蛋白质,还去除了体积庞大的产生 ROS 的细胞器(如线粒体和过氧化物酶体),以限制进一步的 ROS 产生。自噬的氧化调节发生在自噬的所有过程中,从诱导、吞噬体成核、吞噬体扩展、自噬体成熟、货物递送到溶酶体,最后到货物降解和产物回收,以及自噬基因转录。在机械上,这些调节是通过直接或间接的方式实现的。关键蛋白如 ATG4、ATM 和 TFEB 的直接硫醇氧化负责吞噬体扩展、货物识别和自噬基因转录的特定调节。同时,某些氧化还原敏感伴侣样蛋白(PRDX 家族成员和 PARK7)的氧化可能会损害吞噬体膜中局部非特异性还原环境,并影响 BECN1 参与的吞噬体成核和线粒体自噬识别。然而,ROS 通过直接氧化关键自噬调节剂如 ATG3、ATG7 和 SENP3 蛋白,确实对自噬表现出一些抑制作用。SQSTM1 提供了一种替代的抗氧化机制,当自噬不可用时或受损时。然而,目前尚不清楚细胞如何进化为使蛋白质具有不同的氧化敏感性,并使其处于正确的亚细胞位置,以及细胞如何根据不同水平的 ROS 来精细调节自噬机制。AKT1/PKB:AKT 丝氨酸/苏氨酸激酶 1;AMPK:AMP 激活的蛋白激酶;ATG:自噬相关;ATM:ATM 丝氨酸/苏氨酸激酶;BAX:BCL2 相关 X,凋亡调节剂;BECN1:beclin 1;BH3:BCL2-homology-3;CAV1: caveolin 1;CCCP:羰基氰化物 m-氯苯腙;CTSB:组织蛋白酶 B;CTSL:组织蛋白酶 L;DAPK:死亡相关蛋白激酶;ER:内质网;ETC:电子传递链;GSH:谷胱甘肽;GSTP1:谷胱甘肽 S-转移酶 pi 1;HO:过氧化氢;HK2:己糖激酶 2;KEAP1:kelch 样 ECH 相关蛋白 1;MAMs:线粒体相关内质网膜;MAP1LC3B/LC3:微管相关蛋白 1 轻链 3β;MAPK8/JNK1:丝裂原激活的蛋白激酶 8;MAP3K5/ASK1:丝裂原激活的蛋白激酶激酶激酶 5;MCOLN1:mucolipin 1;MMP:线粒体膜电位;MTOR:雷帕霉素机制靶标激酶;NFE2L2/NRF2:核因子,红细胞 2 样 2;NFKB1:核因子 kappa B 亚单位 1;NOX:NADPH 氧化酶;O:超氧自由基阴离子;p-Ub:磷酸化 Ub;PARK7/DJ-1:帕金森病相关去糖基化酶;PE:磷脂酰乙醇胺;PEX5:过氧化物酶体生物发生因子 5;PINK1:PTEN 诱导的激酶 1;PPRDX:过氧化物酶;PRKAA1:蛋白激酶 AMP 激活的催化亚基α 1;PRKD/PKD:蛋白激酶 D;PRKN/parkin:parkin RBR E3 泛素蛋白连接酶;PtdIns3K:III 类磷酸肌醇 3-激酶;PtdIns3P:磷脂酰肌醇-3-磷酸;PTEN:磷酸酶和张力蛋白同源物;ROS:活性氧;SENP3:SUMO 特异性肽酶 3;SIRT1:sirtuin 1;SOD1:超氧化物歧化酶 1;SQSTM1/p62:自噬体 1;SUMO:小泛素样修饰物;TFEB:转录因子 EB;TRAF6:TNF 受体相关因子 6;TSC2:TSC 复合物亚基 2;TXN:硫氧还蛋白;TXNRD1:硫氧还蛋白还原酶 1;TXNIP:硫氧还蛋白相互作用蛋白;Ub:泛素;ULK1:UNC-51 样自噬激活激酶 1。

相似文献

1
Full-coverage regulations of autophagy by ROS: from induction to maturation.
Autophagy. 2022 Jun;18(6):1240-1255. doi: 10.1080/15548627.2021.1984656. Epub 2021 Oct 18.
3
Copper metabolism in cell death and autophagy.
Autophagy. 2023 Aug;19(8):2175-2195. doi: 10.1080/15548627.2023.2200554. Epub 2023 Apr 16.
4
Mitochondria ROS and mitophagy in acute kidney injury.
Autophagy. 2023 Feb;19(2):401-414. doi: 10.1080/15548627.2022.2084862. Epub 2022 Jun 9.
5
The exploitation of host autophagy and ubiquitin machinery by in shaping immune responses and host defense during infection.
Autophagy. 2023 Jan;19(1):3-23. doi: 10.1080/15548627.2021.2021495. Epub 2022 Jan 9.
6
Emerging views of mitophagy in immunity and autoimmune diseases.
Autophagy. 2020 Jan;16(1):3-17. doi: 10.1080/15548627.2019.1603547. Epub 2019 Apr 21.
7
Dual roles of ULK1 (unc-51 like autophagy activating kinase 1) in cytoprotection against lipotoxicity.
Autophagy. 2020 Jan;16(1):86-105. doi: 10.1080/15548627.2019.1598751. Epub 2019 Apr 9.
8
The ménage à trois of autophagy, lipid droplets and liver disease.
Autophagy. 2022 Jan;18(1):50-72. doi: 10.1080/15548627.2021.1895658. Epub 2021 Apr 2.
9
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
10
Autophagy in age-related macular degeneration.
Autophagy. 2023 Feb;19(2):388-400. doi: 10.1080/15548627.2022.2069437. Epub 2022 May 1.

引用本文的文献

1
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis.
Biomedicines. 2025 Aug 5;13(8):1913. doi: 10.3390/biomedicines13081913.
4
Mitophagy in Hypertensive Cardiac Hypertrophy: Mechanisms and Therapeutic Implications.
J Clin Hypertens (Greenwich). 2025 Aug;27(8):e70127. doi: 10.1111/jch.70127.
5
Microbial Lipopolysaccharide Regulates Host Development Through Insulin/IGF-1 Signaling.
Int J Mol Sci. 2025 Jul 31;26(15):7399. doi: 10.3390/ijms26157399.
6
Bibliometric analysis of research hotspots and emerging trends in mitophagy and atherosclerosis (2004-2024).
Front Med (Lausanne). 2025 Jul 25;12:1621079. doi: 10.3389/fmed.2025.1621079. eCollection 2025.
7
Honey-fried licorice decoction ameliorates atrial fibrillation susceptibility by inhibiting the NOX2-ROS-TGF-β1 pathway.
Front Pharmacol. 2025 Jul 23;16:1595111. doi: 10.3389/fphar.2025.1595111. eCollection 2025.
8
NMDA Receptors Coordinate Metabolic Reprogramming and Mitophagy in Schwann Cells to Promote Peripheral Nerve Regeneration.
Research (Wash D C). 2025 Aug 5;8:0825. doi: 10.34133/research.0825. eCollection 2025.
10
Targeting advanced glycation end products: potential therapeutic approaches for mitigating diabetic intervertebral disc degeneration?
Front Endocrinol (Lausanne). 2025 Jul 7;16:1618984. doi: 10.3389/fendo.2025.1618984. eCollection 2025.

本文引用的文献

2
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).
Autophagy. 2021 Jan;17(1):1-382. doi: 10.1080/15548627.2020.1797280. Epub 2021 Feb 8.
3
Ferroptosis: mechanisms, biology and role in disease.
Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282. doi: 10.1038/s41580-020-00324-8. Epub 2021 Jan 25.
4
mTOR at the nexus of nutrition, growth, ageing and disease.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203. doi: 10.1038/s41580-019-0199-y. Epub 2020 Jan 14.
5
The protease activity of human ATG4B is regulated by reversible oxidative modification.
Autophagy. 2020 Oct;16(10):1838-1850. doi: 10.1080/15548627.2019.1709763. Epub 2020 Jan 3.
7
Mitochondria as multifaceted regulators of cell death.
Nat Rev Mol Cell Biol. 2020 Feb;21(2):85-100. doi: 10.1038/s41580-019-0173-8. Epub 2019 Oct 21.
8
Mitochondria-Striking a balance between host and endosymbiont.
Science. 2019 Aug 16;365(6454). doi: 10.1126/science.aaw9855.
9
A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3.
Autophagy. 2020 Jun;16(6):975-990. doi: 10.1080/15548627.2019.1647944. Epub 2019 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验