Suppr超能文献

删除 CAR T 细胞中的 DNMT3A 可防止衰竭并增强抗肿瘤活性。

Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity.

机构信息

Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.

Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Sci Transl Med. 2021 Nov 17;13(620):eabh0272. doi: 10.1126/scitranslmed.abh0272.

Abstract

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined. Here, we report that exhaustion of human CAR T cells occurs through an epigenetic repression of the T cell’s multipotent developmental potential. Deletion of the de novo DNA methyltransferase 3 alpha (DNMT3A) in T cells expressing first- or second-generation CARs universally preserved the cells’ ability to proliferate and mount an antitumor response during prolonged tumor exposure. The increased functionality of the exhaustion-resistant DNMT3A knockout CAR T cells was coupled to an up-regulation of interleukin-10, and genome-wide DNA methylation profiling defined an atlas of genes targeted for epigenetic silencing. This atlas provides a molecular definition of CAR T cell exhaustion, which includes many transcriptional regulators that limit the “stemness” of immune cells, including CD28, CCR7, TCF7, and LEF1. Last, we demonstrate that this epigenetically regulated multipotency program is firmly coupled to the clinical outcome of prior CAR T cell therapies. These data document the critical role epigenetic mechanisms play in limiting the fate potential of human T cells and provide a road map for leveraging this information for improving CAR T cell efficacy.

摘要

嵌合抗原受体 (CAR) T 细胞疗法正在彻底改变 B 细胞恶性肿瘤的癌症免疫疗法,目前正在开发用于实体瘤和慢性病毒感染。尽管临床试验已经证明了 CAR T 细胞疗法的治疗潜力,但一个重要且成熟的限制是在长时间抗原暴露下,CAR T 细胞的大量收缩和短暂持续。这种功能失调状态(通常称为 CAR T 细胞耗竭)的潜在机制仍未得到很好的定义。在这里,我们报告人类 CAR T 细胞的耗竭是通过 T 细胞多能性发育潜能的表观遗传抑制发生的。在表达第一代或第二代 CAR 的 T 细胞中删除从头 DNA 甲基转移酶 3α (DNMT3A),普遍保留了细胞在长时间肿瘤暴露下增殖和产生抗肿瘤反应的能力。衰竭抵抗的 DNMT3A 敲除 CAR T 细胞的功能增强与白细胞介素 10 的上调有关,全基因组 DNA 甲基化分析定义了一个针对表观遗传沉默的基因图谱。该图谱提供了 CAR T 细胞耗竭的分子定义,其中包括许多限制免疫细胞“干性”的转录调节剂,包括 CD28、CCR7、TCF7 和 LEF1。最后,我们证明了这种受表观遗传调控的多能性程序与之前 CAR T 细胞治疗的临床结果密切相关。这些数据证明了表观遗传机制在限制人类 T 细胞命运潜能方面的关键作用,并为利用这些信息提高 CAR T 细胞疗效提供了路线图。

相似文献

1
Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity.
Sci Transl Med. 2021 Nov 17;13(620):eabh0272. doi: 10.1126/scitranslmed.abh0272.
2
Disruption of SUV39H1-Mediated H3K9 Methylation Sustains CAR T-cell Function.
Cancer Discov. 2024 Jan 12;14(1):142-157. doi: 10.1158/2159-8290.CD-22-1319.
3
Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors.
Mol Ther. 2024 Jun 5;32(6):1617-1627. doi: 10.1016/j.ymthe.2024.04.004. Epub 2024 Apr 6.
4
Inclusion of 4-1BB Costimulation Enhances Selectivity and Functionality of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells.
Cancer Res Commun. 2023 Jan 17;3(1):66-79. doi: 10.1158/2767-9764.CRC-22-0185. eCollection 2023 Jan.
5
Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion.
EBioMedicine. 2022 Mar;77:103941. doi: 10.1016/j.ebiom.2022.103941. Epub 2022 Mar 15.
7
NR4A ablation improves mitochondrial fitness for long persistence in human CAR-T cells against solid tumors.
J Immunother Cancer. 2024 Aug 16;12(8):e008665. doi: 10.1136/jitc-2023-008665.
8
BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion.
Sci Transl Med. 2022 Nov 9;14(670):eabn7336. doi: 10.1126/scitranslmed.abn7336.
9
Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2 Breast Cancer Metastasis to the Brain.
Clin Cancer Res. 2018 Jan 1;24(1):95-105. doi: 10.1158/1078-0432.CCR-17-2041. Epub 2017 Oct 23.

引用本文的文献

1
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
2
Challenges in the preclinical design and assessment of CAR-T cells.
Front Immunol. 2025 Aug 8;16:1564998. doi: 10.3389/fimmu.2025.1564998. eCollection 2025.
3
Tracing the development of CAR-T cell design: from concept to next-generation platforms.
Front Immunol. 2025 Jul 17;16:1615212. doi: 10.3389/fimmu.2025.1615212. eCollection 2025.
4
Clonal hematopoiesis in myeloid malignancies and solid tumors.
Nat Cancer. 2025 Jul 18. doi: 10.1038/s43018-025-01014-0.
5
[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].
Zhonghua Xue Ye Xue Za Zhi. 2025 May 14;46(5):481-488. doi: 10.3760/cma.j.cn121090-20240911-00343.
6
CAR-T cell therapy in brain malignancies: obstacles in the face of cellular trafficking and persistence.
Front Immunol. 2025 Jun 19;16:1596499. doi: 10.3389/fimmu.2025.1596499. eCollection 2025.
7
B7-H3 CAR T Cells Are Effective against Ependymomas but Limited by Tumor Size and Immune Response.
Clin Cancer Res. 2025 Sep 2;31(17):3754-3770. doi: 10.1158/1078-0432.CCR-24-3083.
8
Clonal Hematopoiesis: Impact on Health and Disease.
Hematol Oncol. 2025 Jun;43 Suppl 2(Suppl 2):e70075. doi: 10.1002/hon.70075.

本文引用的文献

2
Metabolic reprogramming of terminally exhausted CD8 T cells by IL-10 enhances anti-tumor immunity.
Nat Immunol. 2021 Jun;22(6):746-756. doi: 10.1038/s41590-021-00940-2. Epub 2021 May 24.
3
A Chimeric GM-CSF/IL18 Receptor to Sustain CAR T-cell Function.
Cancer Discov. 2021 Jul;11(7):1661-1671. doi: 10.1158/2159-8290.CD-20-0896. Epub 2021 Feb 9.
4
Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer.
Science. 2020 Dec 11;370(6522):1328-1334. doi: 10.1126/science.abb9847.
5
Tissue-Biased Expansion of DNMT3A-Mutant Clones in a Mosaic Individual Is Associated with Conserved Epigenetic Erosion.
Cell Stem Cell. 2020 Aug 6;27(2):326-335.e4. doi: 10.1016/j.stem.2020.06.018. Epub 2020 Jul 15.
6
Rewriting History: Epigenetic Reprogramming of CD8 T Cell Differentiation to Enhance Immunotherapy.
Trends Immunol. 2020 Aug;41(8):665-675. doi: 10.1016/j.it.2020.06.008. Epub 2020 Jul 2.
7
Beta cell-specific CD8 T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes.
Nat Immunol. 2020 May;21(5):578-587. doi: 10.1038/s41590-020-0633-5. Epub 2020 Mar 30.
8
Developmental plasticity allows outside-in immune responses by resident memory T cells.
Nat Immunol. 2020 Apr;21(4):412-421. doi: 10.1038/s41590-020-0607-7. Epub 2020 Feb 17.
9
Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-free Media.
Mol Ther Methods Clin Dev. 2019 Nov 26;17:58-68. doi: 10.1016/j.omtm.2019.11.011. eCollection 2020 Jun 12.
10
c-Jun overexpression in CAR T cells induces exhaustion resistance.
Nature. 2019 Dec;576(7786):293-300. doi: 10.1038/s41586-019-1805-z. Epub 2019 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验