Suppr超能文献

用于交叉电偶联的可调谐且实用的均相有机还原剂。

Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.

机构信息

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States.

Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States.

出版信息

J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.

Abstract

The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp)-C(sp) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp)-C(sp) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.

摘要

报告了基于四氨亚乙烯骨架的四种新型可调谐均相有机还原剂的合成。与用于金属介导的还原转化(如交叉电子对偶联(XEC))的当前均相还原剂相比,这些新还原剂具有增强的空气稳定性,并且在室温下为固体。特别是,最弱的还原剂在空气中稳定且无限期稳定,其还原电位为相对于 Ferrocene 的-0.85 V,比用于 XEC 的常规还原剂明显温和。所有新型还原剂都可以促进 C(sp)-C(sp)Ni 催化的 XEC 反应,并且与与药物化学相关的复杂底物兼容。还原剂的还原电位范围在近 0.5 V 之间,这允许控制 XEC 中电子转移事件的速率。具体而言,我们报告了 Ni 催化的 C(sp)-C(sp)XEC 中控制烷基自由基生成的新策略。我们方法的关键是通过改变催化中使用的还原剂和 Katritzky 盐的氧化还原电位来调节从 Katritzky 盐释放烷基自由基的 Katritzky 盐的烷基自由基生成速率。使用我们的方法,我们进行了苄基 Katritzky 盐和芳基卤化物之间的 XEC 反应。该方法耐受多种官能团,其中一些对大多数 XEC 转化特别具有挑战性。总体而言,我们预计我们的新型还原剂将由于其稳定性和相对简单的合成而取代当前还原转化中的常规均相还原剂,并且由于其可调谐性而导致新的合成方法的发展。

相似文献

1
Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.
J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.
2
Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations.
J Org Chem. 2022 Jun 17;87(12):7589-7609. doi: 10.1021/acs.joc.2c00462. Epub 2022 Jun 7.
3
Insights into Recent Nickel-Catalyzed Reductive and Redox C-C Coupling of Electrophiles, C(sp)-H Bonds and Alkenes.
Acc Chem Res. 2024 Apr 16;57(8):1149-1162. doi: 10.1021/acs.accounts.3c00810. Epub 2024 Mar 28.
4
Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling.
Nat Chem. 2024 Dec;16(12):2036-2043. doi: 10.1038/s41557-024-01627-5. Epub 2024 Sep 6.
5
General C(sp)-C(sp) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts.
J Am Chem Soc. 2020 Mar 25;142(12):5884-5893. doi: 10.1021/jacs.0c01475. Epub 2020 Mar 10.
6
Enantioselective C(sp)-C(sp) Bond Construction by Ni Catalysis.
Acc Chem Res. 2024 Mar 5;57(5):751-762. doi: 10.1021/acs.accounts.3c00775. Epub 2024 Feb 12.
7
Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp)-C(sp) Coupling via a Ni Aryl Amido Intermediate.
Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202407118. doi: 10.1002/anie.202407118. Epub 2024 Aug 13.
8
Zirconium-Redox-Shuttled Cross-Electrophile Coupling of Aromatic and Heteroaromatic Halides.
Chem. 2021 Jul 8;7(7):1963-1974. doi: 10.1016/j.chempr.2021.06.007.
9
Nickel-Catalyzed C-I-Selective C(sp )-C(sp ) Cross-Electrophile Coupling of Bromo(iodo)arenes with Alkyl Bromides.
Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202304177. doi: 10.1002/anie.202304177. Epub 2023 May 17.
10
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.

引用本文的文献

1
Formate-Mediated C-C Coupling of Aryl/Vinyl Halides and Triflates: Carbonyl Arylation and Reductive Cross-Coupling.
ACS Catal. 2025 May 16;15(10):8274-8283. doi: 10.1021/acscatal.5c01994. Epub 2025 May 2.
4
Aryl halide cross-coupling via formate-mediated transfer hydrogenation.
Nat Chem. 2025 May;17(5):710-718. doi: 10.1038/s41557-024-01729-0. Epub 2025 Mar 11.
5
Cross-Electrophile Coupling to Form Sterically Hindered C(sp)-C(sp) Bonds: Ni and Co Afford Complementary Reactivity.
J Am Chem Soc. 2025 Mar 19;147(11):9449-9456. doi: 10.1021/jacs.4c16912. Epub 2025 Mar 7.
6
Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis.
Chem Rev. 2024 Dec 11;124(23):13397-13569. doi: 10.1021/acs.chemrev.4c00524. Epub 2024 Nov 26.
7
Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones.
ACS Catal. 2023 Sep 1;13(17):11277-11290. doi: 10.1021/acscatal.3c02643. Epub 2023 Aug 11.
8
Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling.
Nat Chem. 2024 Dec;16(12):2036-2043. doi: 10.1038/s41557-024-01627-5. Epub 2024 Sep 6.
9
Formate-Mediated Reductive Cross-Coupling of Vinyl Halides and Aryl Iodides: -Substitution via Palladium(I) Catalysis.
Org Lett. 2024 Aug 23;26(33):7055-7059. doi: 10.1021/acs.orglett.4c02642. Epub 2024 Aug 12.
10
Homogeneous Organic Reductant Based on 4,4'-Bu-2,2'-Bipyridine for Cross-Electrophile Coupling.
Tetrahedron Lett. 2024 Jul 28;145. doi: 10.1016/j.tetlet.2024.155159. Epub 2024 Jun 19.

本文引用的文献

1
Dissection of Alkylpyridinium Structures to Understand Deamination Reactions.
ACS Catal. 2021 Jul 16;11(14):8456-8466. doi: 10.1021/acscatal.1c01860. Epub 2021 Jun 28.
2
A Process Chemistry Benchmark for sp-sp Cross Couplings.
J Org Chem. 2021 Aug 6;86(15):10380-10396. doi: 10.1021/acs.joc.1c01073. Epub 2021 Jul 13.
3
ChemBead Enabled High-Throughput Cross-Electrophile Coupling Reveals a New Complementary Ligand.
Chemistry. 2021 Sep 9;27(51):12981-12986. doi: 10.1002/chem.202102347. Epub 2021 Jul 29.
4
5
A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies.
ACS Catal. 2020 Nov 6;10(21):12642-12656. doi: 10.1021/acscatal.0c03237. Epub 2020 Sep 29.
6
Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides.
J Am Chem Soc. 2021 Mar 10;143(9):3536-3543. doi: 10.1021/jacs.0c13093. Epub 2021 Feb 23.
7
Dual Catalytic Strategy for Forging spsp and spsp Architectures via βScission of Aliphatic Alcohol Derivatives.
J Am Chem Soc. 2020 Dec 9;142(49):20594-20599. doi: 10.1021/jacs.0c11172. Epub 2020 Nov 30.
8
Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions.
ACS Catal. 2020 Aug 7;10(15):8237-8246. doi: 10.1021/acscatal.0c01842. Epub 2020 Jun 24.
9
Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl Iodides via Ni/Ti/Photoredox Catalysis.
ACS Catal. 2020 May 15;10(10):5821-5827. doi: 10.1021/acscatal.0c01199. Epub 2020 May 4.
10
Asymmetric Ni-Catalyzed Radical Relayed Reductive Coupling.
J Am Chem Soc. 2020 Aug 5;142(31):13515-13522. doi: 10.1021/jacs.0c05254. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验