Suppr超能文献

循环蛋白质组的表观遗传评分可作为疾病预测的工具。

Epigenetic scores for the circulating proteome as tools for disease prediction.

机构信息

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.

出版信息

Elife. 2022 Jan 13;11:e71802. doi: 10.7554/eLife.71802.

Abstract

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.

摘要

蛋白质生物标志物已在许多与年龄相关的疾病中被确定。然而,描述表观遗传影响可以进一步为疾病预测提供信息。在这里,我们利用全基因组的表观遗传数据来研究循环蛋白的 DNA 甲基化 (DNAm) 特征与疾病之间的联系。使用来自四个队列的数据,我们为 953 种血浆蛋白训练和测试了表观遗传评分 (EpiScores),确定了 109 个评分,这些评分在调整已知蛋白质数量性状基因座 (pQTL) 遗传效应后,可以解释蛋白水平的 1%至 58%的方差。通过将这些 EpiScores 投射到一个独立的样本(苏格兰一代;n=9537)中,并将它们与 14 年的随访期间发生的疾病联系起来,我们发现了 137 个 EpiScore-疾病关联。这些关联在很大程度上独立于免疫细胞比例、常见的生活方式和健康因素以及生物学衰老。值得注意的是,我们发现与糖尿病相关的 EpiScores 突出了以前对糖尿病的全蛋白组评估中的顶级生物标志物关联。因此,这些用于蛋白质水平的 EpiScores 可以成为疾病预测和风险分层的有价值资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c7/8880990/0f65fb3f4de8/elife-71802-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验