Suppr超能文献

MACSima 成像循环染色(MICS)技术揭示了 CAR T 细胞治疗实体瘤的组合靶对。

MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors.

机构信息

Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.

Qi Biotech, Inc., 12261 Beestone Lane, Raleigh, NC, 27614, USA.

出版信息

Sci Rep. 2022 Feb 3;12(1):1911. doi: 10.1038/s41598-022-05841-4.

Abstract

Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.

摘要

许多关键的研究进展利用了结合高分辨率和单细胞水平高内涵特征的技术。我们介绍了 MICS(MACSima 成像循环染色)技术,该技术能够在单细胞水平上对数百种蛋白质靶标进行免疫荧光成像。MICS 基于染色、成像和擦除的循环,使用重组抗体(REAfinity 抗体)的荧光标记物的光漂白,或抗体(REAlease 抗体)或其标记物(REAdye_lease 抗体)的释放。多标记分析可以鉴定针对实体瘤免疫治疗的潜在靶标。使用 MICS,我们分析了人胶质母细胞瘤、卵巢癌和胰腺癌以及 16 种健康组织,鉴定出 EPCAM/THY1 对卵巢癌嵌合抗原受体(CAR)T 细胞治疗是一个潜在的靶标。我们使用适配器 CAR T 细胞方法,仅当两种标记物都表达时才显示出对细胞的选择性杀伤。MICS 代表了一种新的高通量显微镜方法,广泛适用于个性化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6168/8813936/546bf2524471/41598_2022_5841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验