Translational Biology, Research and Development, Biogen Inc., Cambridge, MA, USA.
BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
Nature. 2022 Mar;603(7899):95-102. doi: 10.1038/s41586-022-04394-w. Epub 2022 Feb 23.
Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have so far remained largely underpowered in relation to identifying associations in the rare and low-frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes. Here we combined whole-exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third being previously unreported. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks enabled us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery.
全基因组关联研究(GWAS)已经确定了数千种与人类疾病风险相关的遗传变异。然而,GWAS 迄今为止在识别罕见和低频等位基因谱中的关联方面仍然效力不足,并且缺乏追踪潜在基因因果机制的分辨率。在这里,我们将 392,814 名英国生物库参与者的全外显子组测序与 260,405 名芬兰遗传参与者的推断基因型相结合(总计 653,219 人),对整个蛋白质编码等位基因频率谱中的 744 种疾病终点进行关联荟萃分析,在常见和罕见变异研究之间架起了桥梁。我们确定了 975 种关联,其中超过三分之一是以前未报告过的。我们证明了先前归因于引起单基因疾病的突变在人群水平上的相关性,将 GWAS 关联映射到可能的因果基因,解释疾病机制,并系统地将疾病关联与 117 种生物标志物和临床阶段药物靶点的水平联系起来。通过在两个人群生物库中进行测序和基因分型,我们能够受益于增加的检测和解释疾病关联的效力,通过复制验证发现结果,并为罕见遗传变异提出医学可操作性。我们的研究为未来深入了解疾病生物学和药物发现提供了一个编码变异关联的纲要。