Suppr超能文献

在脂质纳米粒中用带电替代物替代辅助脂质,可促进靶向 mRNA 递送至脾脏和肺部。

The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs.

机构信息

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.

出版信息

J Control Release. 2022 May;345:819-831. doi: 10.1016/j.jconrel.2022.03.046. Epub 2022 Mar 26.

Abstract

The broad clinical application of mRNA therapeutics has been hampered by a lack of delivery vehicles that induce protein expression in extrahepatic organs and tissues. Recently, it was shown that mRNA delivery to the spleen or lungs is possible upon the addition of a charged lipid to a standard four-component lipid nanoparticle formulation. This approach, while effective, further complicates an already complex drug formulation and has the potential to slow regulatory approval and adversely impact manufacturing processes. We were thus motivated to maintain a four-component nanoparticle system while achieving shifts in tropism. To that end, we replaced the standard helper lipid in lipidoid nanoparticles, DOPE, with one of eight alternatives. These lipids included the neutral lipids, DOPC, sphingomyelin, and ceramide; the anionic lipids, phosphatidylserine (PS), phosphatidylglycerol, and phosphatidic acid; and the cationic lipids, DOTAP and ethyl phosphatidylcholine. While neutral helper lipids maintained protein expression in the liver, anionic and cationic lipids shifted protein expression to the spleen and lungs, respectively. For example, replacing DOPE with DOTAP increased positive LNP surface charge at pH 7 by 5-fold and altered the ratio of liver to lung protein expression from 36:1 to 1:56. Similarly, replacing DOPE with PS reduced positive charge by half and altered the ratio of liver to spleen protein expression from 8:1 to 1:3. Effects were consistent across ionizable lipidoid chemistries. Regarding mechanism, nanoparticles formulated with neutral and anionic helper lipids best transfected epithelial and immune cells, respectively. Further, the lung-tropic effect of DOTAP was linked to reduced immune cell infiltration of the lungs compared to neutral or anionic lipids. Together, these data show that intravenous non-hepatocellular mRNA delivery is readily achievable while maintaining a four-component formulation with modified helper lipid chemistry.

摘要

mRNA 疗法的广泛临床应用受到缺乏能够在肝外器官和组织中诱导蛋白表达的递药载体的限制。最近,研究表明,在标准的四组分脂质纳米颗粒制剂中添加带电荷的脂质,可以实现 mRNA 向脾脏或肺部的递药。这种方法虽然有效,但进一步增加了原本复杂的药物制剂的复杂性,并有可能减缓监管审批过程并对制造工艺产生不利影响。因此,我们希望在保持四组分纳米颗粒系统的同时实现转导谱的改变。为此,我们用八种替代脂质中的一种替代脂质体纳米颗粒中的标准辅助脂质 DOPE。这些脂质包括中性脂质 DOPC、鞘磷脂和神经酰胺;阴离子脂质磷脂酰丝氨酸 (PS)、磷脂酰甘油和磷脂酸;以及阳离子脂质 DOTAP 和乙基磷脂酰胆碱。虽然中性辅助脂质维持了肝脏中的蛋白表达,但阴离子和阳离子脂质分别将蛋白表达转移到脾脏和肺部。例如,用 DOTAP 替代 DOPE 将 pH 7 时的阳性 LNP 表面电荷增加了 5 倍,并将肝脏与肺部蛋白表达的比值从 36:1 改变为 1:56。同样,用 PS 替代 DOPE 将正电荷减少一半,并将肝脏与脾脏蛋白表达的比值从 8:1 改变为 1:3。这些效应在可离子化的脂质体化学中是一致的。关于机制,用中性和阴离子辅助脂质制备的纳米颗粒分别最有效地转染上皮细胞和免疫细胞。此外,与中性或阴离子脂质相比,DOTAP 的肺部转导作用与肺部免疫细胞浸润减少有关。总之,这些数据表明,通过维持改良辅助脂质化学的四组分制剂,很容易实现非肝细胞内静脉内 mRNA 递药。

相似文献

1
The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs.
J Control Release. 2022 May;345:819-831. doi: 10.1016/j.jconrel.2022.03.046. Epub 2022 Mar 26.
2
Branched-Tail Lipid Nanoparticles for Intravenous mRNA Delivery to Lung Immune, Endothelial, and Alveolar Cells in Mice.
Adv Healthc Mater. 2024 Sep;13(22):e2400225. doi: 10.1002/adhm.202400225. Epub 2024 Jul 2.
3
Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery.
Theranostics. 2024 Jan 1;14(1):1-16. doi: 10.7150/thno.89913. eCollection 2024.
4
Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.
Biomater Sci. 2021 Feb 21;9(4):1449-1463. doi: 10.1039/d0bm01609h. Epub 2021 Jan 6.
5
Exploration of mRNA nanoparticles based on DOTAP through optimization of the helper lipids.
Biotechnol J. 2023 Nov;18(11):e2300123. doi: 10.1002/biot.202300123. Epub 2023 Aug 10.
6
Cationic Lipid Pairs Enhance Liver-to-Lung Tropism of Lipid Nanoparticles for In Vivo mRNA Delivery.
ACS Appl Mater Interfaces. 2024 May 22;16(20):25698-25709. doi: 10.1021/acsami.4c02415. Epub 2024 May 8.
7
Lipid nanoparticle-based mRNA candidates elicit potent T cell responses.
Biomater Sci. 2023 Jan 31;11(3):964-974. doi: 10.1039/d2bm01581a.
8
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
9
A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs.
J Control Release. 2022 Oct;350:256-270. doi: 10.1016/j.jconrel.2022.08.009. Epub 2022 Aug 24.
10
Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
Eur J Pharm Sci. 2022 Sep 1;176:106234. doi: 10.1016/j.ejps.2022.106234. Epub 2022 Jun 8.

引用本文的文献

1
Discrete Immolative Guanidinium Transporters deliver mRNA to specific organs and red blood cells.
Nat Commun. 2025 Aug 1;16(1):7055. doi: 10.1038/s41467-025-62200-3.
2
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases.
Pharmaceutics. 2025 Jul 9;17(7):893. doi: 10.3390/pharmaceutics17070893.
4
Lipid nanoparticle screening in nonhuman primates with minimal loss of life.
Nat Biotechnol. 2025 Jun 26. doi: 10.1038/s41587-025-02711-y.
6
Customizable Polymeric Nanoparticle Materials Optimized on Hypoxic Cells Facilitate mRNA Expression in the Lungs In Vivo.
Adv Healthc Mater. 2025 Jul;14(17):e2500245. doi: 10.1002/adhm.202500245. Epub 2025 May 27.
7
Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems.
J Nanobiotechnology. 2025 May 20;23(1):362. doi: 10.1186/s12951-025-03433-8.
8
Transition Temperature-Guided Design of Lipid Nanoparticles for Effective mRNA Delivery.
ACS Appl Mater Interfaces. 2025 May 14;17(19):28012-28024. doi: 10.1021/acsami.5c06464. Epub 2025 May 5.
10
HIV Tat as a latency reversing agent: turning the tables on viral persistence.
Front Immunol. 2025 Apr 11;16:1571151. doi: 10.3389/fimmu.2025.1571151. eCollection 2025.

本文引用的文献

1
A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing .
Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9.
2
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.
Nat Nanotechnol. 2020 Apr;15(4):313-320. doi: 10.1038/s41565-020-0669-6. Epub 2020 Apr 6.
4
Mild Innate Immune Activation Overrides Efficient Nanoparticle-Mediated RNA Delivery.
Adv Mater. 2020 Jan;32(1):e1904905. doi: 10.1002/adma.201904905. Epub 2019 Nov 19.
5
On the role of helper lipids in lipid nanoparticle formulations of siRNA.
Nanoscale. 2019 Nov 21;11(45):21733-21739. doi: 10.1039/c9nr09347h.
6
Physical and chemical profiles of nanoparticles for lymphatic targeting.
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:72-93. doi: 10.1016/j.addr.2019.09.005. Epub 2019 Oct 15.
8
Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems.
Cancers (Basel). 2019 May 8;11(5):640. doi: 10.3390/cancers11050640.
9
Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma.
ACS Nano. 2019 May 28;13(5):5591-5601. doi: 10.1021/acsnano.9b00661. Epub 2019 May 13.
10
Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery.
Mol Ther. 2019 Apr 10;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub 2019 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验