Suppr超能文献

使用RNA测序数据预测重度抑郁症的机器学习模型:分类方法的优化

Machine learning model for predicting Major Depressive Disorder using RNA-Seq data: optimization of classification approach.

作者信息

Verma Pragya, Shakya Madhvi

机构信息

Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, 462003 India.

出版信息

Cogn Neurodyn. 2022 Apr;16(2):443-453. doi: 10.1007/s11571-021-09724-8. Epub 2021 Sep 22.

Abstract

Considering human brain disorders, Major Depressive Disorder (MDD) is seen as a lethal disease in which a person goes to the extent of suicidal behavior. Physical detection of MDD patients is less precise but machine learning can aid in improved classification of disease. The present research included three RNA-seq data classes to classify DEGs and then train key gene data using a random forest machine learning method. The three classes in the sample are 29 CON (sudden death healthy control), 21 MDD-S (a Major Depressive Disorder Suicide) being included in the second group, and 9 MDD (non-suicides MDD) which are included in the third group. With PCA analysis, 99 key genes were obtained. 47.1% data variability is given by these 99 genes. The model training of 99 genes indicated improved classification. The RF classification model has an accuracy of 61.11% over test data and 97.56% over train data. It was also noticed that the RF method offered greater accuracy than the KNN method. 99 genes were annotated using DAVID and ClueGo packages. Some of the important pathways and function observed in the study were glutamatergic synapse, GABA receptor activation, long-term synaptic depression, and morphine addiction. Out Of 99 genes, four genes, namely DLGAP1, GNG2, GRIA1, and GRIA4, were found to be predominantly involved in the glutamatergic synapse pathway. Another substantial link was observed in the GABA receptor activation involving the following two genes, GABBR2 and GNG2. Also, the genes found responsible for long-term synaptic depression were GRIA1, MAPT, and PTEN. There was another finding of morphine addiction which comprises three genes, namely GABBR2, GNG2, and PDE4D. For massive datasets, this approach will act as the gold standard. The cases of CON, MDD, and MDD-S are physically distinct. There was dysregulation in the expression level of 12 genes. The 12 genes act as a possible biomarker for Major Depressive Disorder and open up a new path for depressed subjects to explore further.

摘要

考虑到人类脑部疾病,重度抑郁症(MDD)被视为一种致命疾病,患者可能会出现自杀行为。对MDD患者进行身体检测的准确性较低,但机器学习有助于改进疾病分类。本研究纳入了三类RNA测序数据以对差异表达基因(DEG)进行分类,然后使用随机森林机器学习方法训练关键基因数据。样本中的三类分别是29例CON(猝死健康对照),第二组纳入21例MDD-S(重度抑郁症自杀患者),第三组纳入9例MDD(非自杀性MDD患者)。通过主成分分析(PCA),获得了99个关键基因。这99个基因解释了47.1%的数据变异性。对99个基因进行模型训练显示分类得到了改进。随机森林(RF)分类模型在测试数据上的准确率为61.11%,在训练数据上的准确率为97.56%。研究还发现,RF方法比K近邻(KNN)方法具有更高的准确率。使用DAVID和ClueGo软件包对99个基因进行了注释。该研究中观察到的一些重要途径和功能包括谷氨酸能突触、GABA受体激活、长期突触抑制和吗啡成瘾。在99个基因中,发现有四个基因,即DLGAP1、GNG2、GRIA1和GRIA4,主要参与谷氨酸能突触途径。在GABA受体激活过程中观察到另一个重要联系,涉及以下两个基因GABBR2和GNG2。此外,发现与长期突触抑制有关的基因有GRIA1、MAPT和PTEN。还有一个关于吗啡成瘾的发现,涉及三个基因,即GABBR2、GNG2和PDE4D。对于大规模数据集,这种方法将成为金标准。CON、MDD和MDD-S病例在生理上是不同的。有12个基因的表达水平出现失调。这12个基因可能作为重度抑郁症的生物标志物,为抑郁症患者开辟了一条进一步探索之路。

相似文献

1
Machine learning model for predicting Major Depressive Disorder using RNA-Seq data: optimization of classification approach.
Cogn Neurodyn. 2022 Apr;16(2):443-453. doi: 10.1007/s11571-021-09724-8. Epub 2021 Sep 22.
2
Transcriptomics and sequencing analysis of gene expression profiling for major depressive disorder.
Indian J Psychiatry. 2021 Nov-Dec;63(6):549-553. doi: 10.4103/psychiatry.IndianJPsychiatry_858_20. Epub 2021 Dec 3.
3
Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods.
Front Neurosci. 2021 Jun 18;15:645998. doi: 10.3389/fnins.2021.645998. eCollection 2021.
5
A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder.
Am J Med Genet B Neuropsychiatr Genet. 2016 Apr;171B(3):414-426. doi: 10.1002/ajmg.b.32423. Epub 2016 Feb 19.
6
A multimodal prediction model for suicidal attempter in major depressive disorder.
PeerJ. 2023 Nov 8;11:e16362. doi: 10.7717/peerj.16362. eCollection 2023.
7
EEG based functional connectivity in resting and emotional states may identify major depressive disorder using machine learning.
Clin Neurophysiol. 2024 Aug;164:130-137. doi: 10.1016/j.clinph.2024.05.017. Epub 2024 Jun 1.
9

引用本文的文献

1
Screening for depression in the general population through lipid biomarkers.
EBioMedicine. 2024 Dec;110:105455. doi: 10.1016/j.ebiom.2024.105455. Epub 2024 Nov 20.
3
Characterization of GABAergic marker expression in prefrontal cortex in dexamethasone induced depression/anxiety model.
Front Endocrinol (Lausanne). 2024 Oct 17;15:1433026. doi: 10.3389/fendo.2024.1433026. eCollection 2024.
6
Optimizing the predictive power of depression screenings using machine learning.
Digit Health. 2023 Aug 29;9:20552076231194939. doi: 10.1177/20552076231194939. eCollection 2023 Jan-Dec.
7
Associations between polygenic risk scores and accelerated brain ageing in smokers.
Psychol Med. 2023 Dec;53(16):7785-7794. doi: 10.1017/S0033291723001812. Epub 2023 Aug 9.
8
Human microglia show unique transcriptional changes in Alzheimer's disease.
Nat Aging. 2023 Jul;3(7):894-907. doi: 10.1038/s43587-023-00424-y. Epub 2023 May 29.
9
Non-Coding Transcriptome Provides Novel Insights into the F17 Susceptibility of Sheep Lamb.
Biology (Basel). 2022 Feb 22;11(3):348. doi: 10.3390/biology11030348.

本文引用的文献

1
Scalable Prediction of Acute Myeloid Leukemia Using High-Dimensional Machine Learning and Blood Transcriptomics.
iScience. 2020 Jan 24;23(1):100780. doi: 10.1016/j.isci.2019.100780. Epub 2019 Dec 18.
2
Machine learning approach to single nucleotide polymorphism-based asthma prediction.
PLoS One. 2019 Dec 4;14(12):e0225574. doi: 10.1371/journal.pone.0225574. eCollection 2019.
3
Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data.
Front Genet. 2019 Sep 4;10:766. doi: 10.3389/fgene.2019.00766. eCollection 2019.
4
U1 snRNA over-expression affects neural oscillations and short-term memory deficits in mice.
Cogn Neurodyn. 2019 Aug;13(4):313-323. doi: 10.1007/s11571-019-09528-x. Epub 2019 Mar 28.
7
BatchI: Batch effect Identification in high-throughput screening data using a dynamic programming algorithm.
Bioinformatics. 2019 Jun 1;35(11):1885-1892. doi: 10.1093/bioinformatics/bty900.
9
New insights into the neurobiological mechanisms of major depressive disorders.
Gen Hosp Psychiatry. 2015 Mar-Apr;37(2):172-7. doi: 10.1016/j.genhosppsych.2015.01.005. Epub 2015 Jan 16.
10
Diagnostic and Statistical Manual of Mental Disorders (DSM).
Codas. 2013;25(2):191-2. doi: 10.1590/s2317-17822013000200017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验