Suppr超能文献

癌症表观遗传学与免疫检查点治疗的交汇点。

The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy.

机构信息

Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.

Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut.

出版信息

Clin Cancer Res. 2023 Apr 3;29(7):1173-1182. doi: 10.1158/1078-0432.CCR-22-0784.

Abstract

Immune checkpoint inhibitors (ICI) have significantly improved treatment outcomes for several types of cancer over the past decade, but significant challenges that limit wider effectiveness of current immunotherapies remain to be addressed. Certain "cold" tumor types, such as pancreatic cancer, exhibit very low response rates to ICI due to intrinsically low immunogenicity. In addition, many patients who initially respond to ICI lack a sustained response due to T-cell exhaustion. Several recent studies show that epigenetic modifiers, such as SETDB1 and LSD1, can play critical roles in regulating both tumor cell-intrinsic immunity and T-cell exhaustion. Here, we review the evidence showing that multiple epigenetic regulators silence the expression of endogenous antigens, and their loss induces viral mimicry responses bolstering the response of "cold" tumors to ICI in preclinical models. Similarly, a previously unappreciated role for epigenetic enzymes is emerging in the establishment and maintenance of stem-like T-cell populations that are critical mediators of response to ICI. Targeting the crossroads of epigenetics and immune checkpoint therapy has tremendous potential to improve antitumor immune responses and herald the next generation of sustained responses in immuno-oncology.

摘要

免疫检查点抑制剂(ICI)在过去十年中显著改善了多种癌症的治疗效果,但仍存在一些限制当前免疫疗法广泛有效性的重大挑战。某些“冷”肿瘤类型,如胰腺癌,由于内在免疫原性低,对 ICI 的反应率非常低。此外,许多最初对 ICI 有反应的患者由于 T 细胞耗竭而缺乏持续反应。最近的几项研究表明,表观遗传修饰剂,如 SETDB1 和 LSD1,可以在调节肿瘤细胞内在免疫和 T 细胞耗竭方面发挥关键作用。在这里,我们回顾了表明多种表观遗传调节剂沉默内源性抗原表达的证据,并且它们的缺失诱导了类似于病毒的模拟反应,从而增强了“冷”肿瘤对 ICI 的反应,这在临床前模型中得到了证实。同样,表观遗传酶的一个以前未被认识的作用正在出现,即在建立和维持对 ICI 反应至关重要的干细胞样 T 细胞群体中。靶向表观遗传学和免疫检查点治疗的交汇点具有极大的潜力来改善抗肿瘤免疫反应,并预示着免疫肿瘤学的下一代持续反应。

相似文献

1
The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy.
Clin Cancer Res. 2023 Apr 3;29(7):1173-1182. doi: 10.1158/1078-0432.CCR-22-0784.
4
Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells.
J Autoimmun. 2019 Nov;104:102310. doi: 10.1016/j.jaut.2019.102310. Epub 2019 Aug 15.
5
Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy.
J Gastroenterol. 2022 Nov;57(11):819-826. doi: 10.1007/s00535-022-01915-2. Epub 2022 Sep 1.
6
Epigenetics and immunotherapy: The current state of play.
Mol Immunol. 2017 Jul;87:227-239. doi: 10.1016/j.molimm.2017.04.012. Epub 2017 May 14.
7
A New Trend in Cancer Treatment: The Combination of Epigenetics and Immunotherapy.
Front Immunol. 2022 Jan 24;13:809761. doi: 10.3389/fimmu.2022.809761. eCollection 2022.
8
Identification of the immune cell infiltration landscape in pancreatic cancer to assist immunotherapy.
Future Oncol. 2021 Nov;17(31):4131-4143. doi: 10.2217/fon-2021-0495. Epub 2021 Aug 4.
9
Cancer Epigenetics, Tumor Immunity, and Immunotherapy.
Trends Cancer. 2020 Jul;6(7):580-592. doi: 10.1016/j.trecan.2020.02.003. Epub 2020 Mar 31.
10
Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges.
Cancer Commun (Lond). 2021 Sep;41(9):830-850. doi: 10.1002/cac2.12183. Epub 2021 Jun 17.

引用本文的文献

1
Atypical R-loops in cancer: decoding molecular chaos for therapeutic gain.
J Transl Med. 2025 Aug 14;23(1):912. doi: 10.1186/s12967-025-06929-x.
2
Advances in pancreatic cancer epigenetics: From the mechanism to the clinic.
World J Gastrointest Oncol. 2025 Jul 15;17(7):106238. doi: 10.4251/wjgo.v17.i7.106238.
5
Innate immune cell barrier-related genes inform precision prognosis in pancreatic cancer.
Front Immunol. 2025 May 23;16:1559373. doi: 10.3389/fimmu.2025.1559373. eCollection 2025.
7
Multi-omics in immunotherapy research for HNSCC: present situation and future perspectives.
NPJ Precis Oncol. 2025 Mar 29;9(1):93. doi: 10.1038/s41698-025-00886-w.
8
Exploring viral mimicry combined with epigenetics and tumor immunity: new perspectives in cancer therapy.
Int J Biol Sci. 2025 Jan 6;21(3):958-973. doi: 10.7150/ijbs.103877. eCollection 2025.
10
A stumbling block in pancreatic cancer treatment: drug resistance signaling networks.
Front Cell Dev Biol. 2025 Jan 13;12:1462808. doi: 10.3389/fcell.2024.1462808. eCollection 2024.

本文引用的文献

2
CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas.
Nat Commun. 2022 Jun 29;13(1):3739. doi: 10.1038/s41467-022-31504-z.
3
Epigenetic regulation of T cell exhaustion.
Nat Immunol. 2022 Jun;23(6):848-860. doi: 10.1038/s41590-022-01224-z. Epub 2022 May 27.
4
The dark side of immunotherapy: pancreatic cancer.
Cancer Drug Resist. 2020 May 11;3(3):491-520. doi: 10.20517/cdr.2020.13. eCollection 2020.
5
MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2106083119. doi: 10.1073/pnas.2106083119. Epub 2022 Apr 21.
6
Transcriptional determinants of cancer immunotherapy response and resistance.
Trends Cancer. 2022 May;8(5):404-415. doi: 10.1016/j.trecan.2022.01.008. Epub 2022 Feb 3.
7
Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma.
N Engl J Med. 2022 Jan 6;386(1):24-34. doi: 10.1056/NEJMoa2109970.
8
Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.
Mol Cancer. 2021 Dec 20;20(1):171. doi: 10.1186/s12943-021-01464-x.
9
The SETDB1-TRIM28 Complex Suppresses Antitumor Immunity.
Cancer Immunol Res. 2021 Dec;9(12):1413-1424. doi: 10.1158/2326-6066.CIR-21-0754.
10
WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway.
J Exp Med. 2022 Jan 3;219(1). doi: 10.1084/jem.20210789. Epub 2021 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验