Suppr超能文献

氟代联苯及其类似物内分泌干扰特性的预测:一项计算机研究。

Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study.

机构信息

College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.

Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, PR China.

出版信息

Chemosphere. 2023 Feb;314:137701. doi: 10.1016/j.chemosphere.2022.137701. Epub 2022 Dec 29.

Abstract

Fluorinated biphenyls and their analogues (FBAs) are considered new persistent organic pollutants, but their endocrine-disrupting effects are still unknown. To fill this gap, the binding probability of 44 FBAs to different nuclear hormone receptors (NHRs) was predicted using Endocrine Disruptome. And molecular similarity and network toxicology analysis were used to strengthen the docking screening. The docking results showed that FBAs could have high binding potential for various NHRs, such as estrogen receptors β antagonism (ERβ an), liver X receptors α (LXRα), estrogen receptors α (ERα), and liver X receptors β (LXRβ). The similarity analysis found that the degree of overlap of the NHR repertoire was related to the Tanimoto coefficient of FBAs. Network toxicology verified a part of docking screening results and identified endocrine-disrupting pathways worthy of attention. This study found out potential endocrine-disrupting FBAs and their vulnerable, and developed a workflow that would leverage in silico approaches including molecular docking, similarity, and network toxicology for risk prioritization of potential endocrine-disrupting compounds.

摘要

氟联苯及其类似物(FBAs)被认为是新的持久性有机污染物,但它们的内分泌干扰作用仍不清楚。为了填补这一空白,使用内分泌干扰组学预测了 44 种 FBAs 与不同核激素受体(NHRs)的结合概率。并采用分子相似性和网络毒理学分析来加强对接筛选。对接结果表明,FBAs 可能对各种 NHRs 具有高结合潜力,如雌激素受体β拮抗剂(ERβ an)、肝 X 受体α(LXRα)、雌激素受体α(ERα)和肝 X 受体β(LXRβ)。相似性分析发现,NHR 库的重叠程度与 FBAs 的 Tanimoto 系数有关。网络毒理学验证了一部分对接筛选结果,并确定了值得关注的内分泌干扰途径。本研究发现了潜在的内分泌干扰 FBAs 及其脆弱性,并开发了一种工作流程,该流程将利用包括分子对接、相似性和网络毒理学在内的计算方法,对潜在的内分泌干扰化合物进行风险优先级排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验