Suppr超能文献

结核分枝杆菌需要细胞壁脂质 phthiocerol dimycocerosate 以实现饥饿诱导的抗生素耐药性。

Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance.

机构信息

Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA.

University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

mSystems. 2023 Feb 23;8(1):e0069922. doi: 10.1128/msystems.00699-22. Epub 2023 Jan 4.

Abstract

Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ::Tn and ::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ::Tn and ::Tn mutants that prevented PDIM production. Complementation of the ::Tn Q291* mutant with restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.

摘要

结核分枝杆菌对抗生素的耐受性导致结核病 (TB) 治疗时间延长和耐药菌株的出现。结核分枝杆菌的药物耐受性是由营养限制诱导的,但促进营养限制引发抗生素耐受性的遗传决定因素尚未得到全面鉴定。在这里,我们表明结核分枝杆菌需要产生细胞壁脂质 phthiocerol dimycocerosate (PDIM) 才能在营养受限条件下耐受抗生素。我们在结核分枝杆菌 Erdman 中开发了一个排列的转座子 (Tn) 突变体文库,并使用正交池和转座子测序 (Tn-seq) 来映射文库中单个突变体的位置。我们通过 Tn-seq 筛选了文库的一个子集(~1000 个突变体),并分别鉴定出 32 个和 102 个 Tn 突变体,它们在静止期和磷酸盐饥饿条件下对抗生素的耐受性分别发生改变。从排列文库中回收的两个突变体 ::Tn 和 ::Tn 在两种营养受限条件下对两种不同药物组合的敏感性均增加,但它们的表型不能由 Tn 中断基因补充。全基因组测序显示,在 ::Tn 和 ::Tn 突变体中都发现了单核苷酸多态性,这些多态性阻止了 PDIM 的产生。用 恢复了 ::Tn Q291* 突变体的 PDIM 产生和抗生素耐受性,表明 PDIM 的缺失使结核分枝杆菌对抗生素敏感。我们的数据表明,靶向 PDIM 产生的药物——一种关键的结核分枝杆菌毒力决定因素,有可能增强现有抗生素的疗效,从而缩短结核病治疗时间并限制耐药性的发展。结核分枝杆菌每年在全球造成 1000 万例活动性结核病病例和超过 100 万人死亡。结核病治疗很复杂,需要至少 6 个月的抗生素联合治疗。导致结核病治疗时间延长的一个因素是结核分枝杆菌表型抗生素耐受性,即使在没有引起耐药性的基因突变的情况下,这种耐受性也允许细菌在长时间暴露于药物下存活。在这里,我们报告了一项遗传筛选,以鉴定结核分枝杆菌在营养饥饿期间促进药物耐受性的基因。我们的研究揭示了细胞壁脂质 phthiocerol dimycocerosate (PDIM) 作为结核分枝杆菌由营养饥饿引发的抗生素耐受性的关键决定因素。我们的研究表明,PDIM 合成可能是开发新的结核病药物的潜在靶点,这些药物将使结核分枝杆菌对现有抗生素敏感,从而缩短结核病治疗时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2167/9948706/be89a3e0e683/msystems.00699-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验