Suppr超能文献

解析多尺度、定量的顺式调控代码。

Deciphering the multi-scale, quantitative cis-regulatory code.

机构信息

Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Mol Cell. 2023 Feb 2;83(3):373-392. doi: 10.1016/j.molcel.2022.12.032. Epub 2023 Jan 23.

Abstract

Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.

摘要

揭示在特定基因组和细胞状态下调控每个基因转录的时间和转录量的顺式调控元件(cis-regulatory code)是生物学的核心目标之一。在这里,我们讨论了影响 DNA 序列和细胞环境如何编码转录产物的主要调控层次。我们首先讨论转录因子如何以剂量依赖和协同的方式结合特定的 DNA 序列,然后讨论促进转录因子功能并介导模块化顺式调控元件(如增强子、沉默子和启动子)活性的辅助因子。接下来,我们考虑这些不同元件在调控景观中的复杂和理解甚少的相互作用及其与染色质状态和核组织的关系。我们提出,一种机制上有启发性的、定量的转录调控模型,该模型整合了这些多个调控层次,将是最终破解顺式调控元件密码的关键。

相似文献

1
Deciphering the multi-scale, quantitative cis-regulatory code.
Mol Cell. 2023 Feb 2;83(3):373-392. doi: 10.1016/j.molcel.2022.12.032. Epub 2023 Jan 23.
3
Interplay between regulatory elements and chromatin topology in cellular lineage determination.
Trends Genet. 2022 Oct;38(10):1048-1061. doi: 10.1016/j.tig.2022.05.011. Epub 2022 Jun 7.
4
Evaluating Enhancer Function and Transcription.
Annu Rev Biochem. 2020 Jun 20;89:213-234. doi: 10.1146/annurev-biochem-011420-095916. Epub 2020 Mar 20.
5
KSHV genome harbors both constitutive and lytically induced enhancers.
J Virol. 2024 Jun 13;98(6):e0017924. doi: 10.1128/jvi.00179-24. Epub 2024 May 2.
6
A cis-regulatory map of the Drosophila genome.
Nature. 2011 Mar 24;471(7339):527-31. doi: 10.1038/nature09990.
7
The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression.
Front Immunol. 2021 Jun 4;12:682397. doi: 10.3389/fimmu.2021.682397. eCollection 2021.
9
Chromatin remodeling effects on enhancer activity.
Cell Mol Life Sci. 2016 Aug;73(15):2897-910. doi: 10.1007/s00018-016-2184-3. Epub 2016 Mar 30.
10
Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in Alternate Cellular Contexts.
Mol Cell. 2020 Jan 16;77(2):324-337.e8. doi: 10.1016/j.molcel.2019.10.004. Epub 2019 Nov 5.

引用本文的文献

1
Pre-training Genomic Language Model with Variants for Better Modeling Functional Genomics.
bioRxiv. 2025 Aug 23:2025.02.26.640468. doi: 10.1101/2025.02.26.640468.
3
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
4
Multimodal learning decodes the global binding landscape of chromatin-associated proteins.
bioRxiv. 2025 Aug 17:2025.08.17.670761. doi: 10.1101/2025.08.17.670761.
5
Combinatorial profiling of multiple histone modifications and transcriptome in single cells using scMTR-seq.
Sci Adv. 2025 Aug 8;11(32):eadu3308. doi: 10.1126/sciadv.adu3308. Epub 2025 Aug 6.
7
Dysregulated Gene Expression: A Candidate Mechanism for Anxiety Disorders.
J Psychiatr Brain Sci. 2025;10(3). doi: 10.20900/jpbs.20250004. Epub 2025 Jun 25.
8
Promoter strength and position govern promoter competition.
bioRxiv. 2025 May 7:2025.05.06.652547. doi: 10.1101/2025.05.06.652547.
9
Post-translational modification of transcription factors: perspectives in vascular medicine.
Cell Death Dis. 2025 Jul 12;16(1):520. doi: 10.1038/s41419-025-07832-5.
10
Perspective on recent developments and challenges in regulatory and systems genomics.
Bioinform Adv. 2025 May 9;5(1):vbaf106. doi: 10.1093/bioadv/vbaf106. eCollection 2025.

本文引用的文献

1
Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications.
Nat Genet. 2024 Jun;56(6):1168-1180. doi: 10.1038/s41588-024-01706-w. Epub 2024 May 9.
2
Affinity-optimizing enhancer variants disrupt development.
Nature. 2024 Feb;626(7997):151-159. doi: 10.1038/s41586-023-06922-8. Epub 2024 Jan 17.
3
Cell-type-directed design of synthetic enhancers.
Nature. 2024 Feb;626(7997):212-220. doi: 10.1038/s41586-023-06936-2. Epub 2023 Dec 12.
4
High-throughput functional characterization of combinations of transcriptional activators and repressors.
Cell Syst. 2023 Sep 20;14(9):746-763.e5. doi: 10.1016/j.cels.2023.07.001. Epub 2023 Aug 4.
5
CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression.
Nat Commun. 2023 Jun 3;14(1):3225. doi: 10.1038/s41467-023-38909-4.
6
Precise modulation of transcription factor levels identifies features underlying dosage sensitivity.
Nat Genet. 2023 May;55(5):841-851. doi: 10.1038/s41588-023-01366-2. Epub 2023 Apr 6.
7
Large-scale mapping and mutagenesis of human transcriptional effector domains.
Nature. 2023 Apr;616(7956):365-372. doi: 10.1038/s41586-023-05906-y. Epub 2023 Apr 5.
8
Structural elements promote architectural stripe formation and facilitate ultra-long-range gene regulation at a human disease locus.
Mol Cell. 2023 May 4;83(9):1446-1461.e6. doi: 10.1016/j.molcel.2023.03.009. Epub 2023 Mar 29.
9
Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient.
Cell Syst. 2023 Mar 15;14(3):220-236.e3. doi: 10.1016/j.cels.2022.12.008. Epub 2023 Jan 24.
10
A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling.
Nat Struct Mol Biol. 2023 Jan;30(1):31-37. doi: 10.1038/s41594-022-00886-5. Epub 2022 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验