Suppr超能文献

为 SARS-CoV-2 患者样本研究开发适当的进化基准模型。

Developing an appropriate evolutionary baseline model for the study of SARS-CoV-2 patient samples.

机构信息

University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America.

Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America.

出版信息

PLoS Pathog. 2023 Apr 5;19(4):e1011265. doi: 10.1371/journal.ppat.1011265. eCollection 2023 Apr.

Abstract

Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread through human populations in several waves, resulting in a global health crisis. In response, genomic surveillance efforts have proliferated in the hopes of tracking and anticipating the evolution of this virus, resulting in millions of patient isolates now being available in public databases. Yet, while there is a tremendous focus on identifying newly emerging adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-occurring and interacting evolutionary processes are constantly in operation and must be jointly considered and modeled in order to perform accurate inference. We here outline critical individual components of such an evolutionary baseline model-mutation rates, recombination rates, the distribution of fitness effects, infection dynamics, and compartmentalization-and describe the current state of knowledge pertaining to the related parameters of each in SARS-CoV-2. We close with a series of recommendations for future clinical sampling, model construction, and statistical analysis.

摘要

在过去的 3 年中,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)已在人类群体中传播了几波,导致了一场全球卫生危机。作为回应,基因组监测工作大量涌现,希望能追踪和预测这种病毒的进化,从而导致现在有数百万人的患者分离株可在公共数据库中获得。然而,尽管人们非常关注识别新出现的适应性病毒变体,但这种量化远非微不足道。具体来说,多个同时发生和相互作用的进化过程一直在运作,必须共同考虑和建模,以进行准确的推断。在这里,我们概述了这种进化基线模型的关键组成部分——突变率、重组率、适应度效应的分布、感染动力学和隔室化,并描述了与 SARS-CoV-2 中每个相关参数的当前知识状态。最后,我们提出了一系列未来临床采样、模型构建和统计分析的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af90/10075409/39cf45023297/ppat.1011265.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验