Suppr超能文献

用于建模 SARS-CoV-2 患者内进化动态的仿真框架。

A Simulation Framework for Modeling the Within-Patient Evolutionary Dynamics of SARS-CoV-2.

机构信息

School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, Arizona, USA.

Division of Biological Sciences, University of Montana, Missoula, Montana, USA.

出版信息

Genome Biol Evol. 2023 Nov 1;15(11). doi: 10.1093/gbe/evad204.

Abstract

The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable interest in detecting novel beneficial mutations and other genomic changes that may signal the development of variants of concern (VOCs). The ability to accurately detect these changes within individual patient samples is important in enabling early detection of VOCs. Such genomic scans for rarely acting positive selection are best performed via comparison of empirical data with simulated data wherein commonly acting evolutionary factors, including mutation and recombination, reproductive and infection dynamics, and purifying and background selection, can be carefully accounted for and parameterized. Although there has been work to quantify these factors in SARS-CoV-2, they have yet to be integrated into a baseline model describing intrahost evolutionary dynamics. To construct such a baseline model, we develop a simulation framework that enables one to establish expectations for underlying levels and patterns of patient-level variation. By varying eight key parameters, we evaluated 12,096 different model-parameter combinations and compared them with existing empirical data. Of these, 592 models (∼5%) were plausible based on the resulting mean expected number of segregating variants. These plausible models shared several commonalities shedding light on intrahost SARS-CoV-2 evolutionary dynamics: severe infection bottlenecks, low levels of reproductive skew, and a distribution of fitness effects skewed toward strongly deleterious mutations. We also describe important areas of model uncertainty and highlight additional sequence data that may help to further refine a baseline model. This study lays the groundwork for the improved analysis of existing and future SARS-CoV-2 within-patient data.

摘要

严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的全球影响导致人们对检测新的有益突变和其他可能表明关注变种 (VOC) 发展的基因组变化产生了浓厚的兴趣。在个体患者样本中准确检测这些变化的能力对于早期发现 VOC 非常重要。通过将经验数据与模拟数据进行比较,可以最好地进行针对稀有起作用的正选择的此类基因组扫描,其中通常起作用的进化因素,包括突变和重组、繁殖和感染动力学以及净化和背景选择,可以得到仔细的考虑和参数化。尽管已经有工作来量化 SARS-CoV-2 中的这些因素,但它们尚未整合到描述宿主内进化动态的基线模型中。为了构建这样的基线模型,我们开发了一个模拟框架,使人们能够建立对患者水平变异的潜在水平和模式的预期。通过改变八个关键参数,我们评估了 12096 种不同的模型-参数组合,并将其与现有经验数据进行了比较。其中,有 592 个模型(约 5%)基于产生的分岐变体的平均预期数量是合理的。这些合理的模型有一些共同之处,揭示了宿主内 SARS-CoV-2 进化动态:严重的感染瓶颈、低水平的繁殖偏斜以及偏向强烈有害突变的适应度效应分布。我们还描述了模型不确定性的重要领域,并强调了可能有助于进一步完善基线模型的额外序列数据。这项研究为改进分析现有和未来 SARS-CoV-2 患者内数据奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8127/10664409/1c4f7c39565f/evad204f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验