Suppr超能文献

肠道隐窝结构中分级的 BMP 信号指导 Wnt 分泌干细胞龛的自我组织。

Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche.

机构信息

Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

Cell Stem Cell. 2023 Apr 6;30(4):433-449.e8. doi: 10.1016/j.stem.2023.03.004.

Abstract

Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81 PDGFRA trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81 PDGFRA mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81 CD55 cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRA myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRA cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.

摘要

周围龛位的信号驱动肠干细胞(ISCs)在肠隐窝底部的增殖并抑制其分化。在黏膜下支持细胞中,深隐窝 CD81 PDGFRA 滋养细胞能够在体外维持 ISC 的功能。在这里,我们表明丰富的 CD81 PDGFRA 小鼠基质细胞的 mRNA 和染色质图谱与滋养细胞相似,并且这两种群体都提供关键的经典 Wnt 配体。间充质表达的关键 ISC 支持因子沿着空间和分子连续体从滋养细胞延伸到隐窝周围的 CD81 CD55 细胞,这些细胞在类器官共培养物中模拟滋养细胞的活性。必需龛位因子的分级表达不是细胞自主的,而是由骨形态发生蛋白(BMP)分泌的 PDGFRA 肌成纤维细胞聚集体的距离决定的。BMP 信号在靠近高隐窝层的 PDGFRA 细胞中抑制 ISC-滋养基因;这种抑制在靠近和低于隐窝基底的基质细胞中得到缓解,包括滋养细胞。因此,细胞距离是自我组织和极化的 ISC 龛位的基础。

相似文献

2
Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient.
Cell Stem Cell. 2020 Mar 5;26(3):391-402.e5. doi: 10.1016/j.stem.2020.01.008. Epub 2020 Feb 20.
3
Smooth muscle contributes to the development and function of a layered intestinal stem cell niche.
Dev Cell. 2023 Apr 10;58(7):550-564.e6. doi: 10.1016/j.devcel.2023.02.012. Epub 2023 Mar 15.
5
Mapping Development of the Human Intestinal Niche at Single-Cell Resolution.
Cell Stem Cell. 2021 Mar 4;28(3):568-580.e4. doi: 10.1016/j.stem.2020.11.008. Epub 2020 Dec 4.
6
A contemporary snapshot of intestinal stem cells and their regulation.
Differentiation. 2019 Jul-Aug;108:3-7. doi: 10.1016/j.diff.2019.01.004. Epub 2019 Jan 25.
8
Regulation of self-renewal and differentiation by the intestinal stem cell niche.
Cell Mol Life Sci. 2011 Aug;68(15):2513-23. doi: 10.1007/s00018-011-0687-5. Epub 2011 Apr 21.
9
Role of PDGFRA cells and a CD55 PDGFRA fraction in the gastric mesenchymal niche.
Nat Commun. 2023 Dec 2;14(1):7978. doi: 10.1038/s41467-023-43619-y.

引用本文的文献

1
Decoding adenomyosis pathogenesis using an assembloid model.
Sci China Life Sci. 2025 Aug 28. doi: 10.1007/s11427-025-2981-1.
2
Transcriptomic Comparisons of Somatic and Cancer Stem Cells.
Biomedicines. 2025 Aug 21;13(8):2039. doi: 10.3390/biomedicines13082039.
6
Tet1 safeguards lineage allocation in intestinal stem cells.
bioRxiv. 2025 May 13:2025.05.08.652522. doi: 10.1101/2025.05.08.652522.
7
Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell.
Cell Stem Cell. 2025 Jun 5;32(6):952-969.e8. doi: 10.1016/j.stem.2025.03.005. Epub 2025 Apr 8.
9
Telocytes in inflammatory bowel diseases: contributions to pathology and therapeutic potentials.
Front Cell Dev Biol. 2025 Jan 13;12:1452258. doi: 10.3389/fcell.2024.1452258. eCollection 2024.

本文引用的文献

1
Smooth muscle contributes to the development and function of a layered intestinal stem cell niche.
Dev Cell. 2023 Apr 10;58(7):550-564.e6. doi: 10.1016/j.devcel.2023.02.012. Epub 2023 Mar 15.
2
Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury.
Cell Stem Cell. 2022 Aug 4;29(8):1262-1272.e5. doi: 10.1016/j.stem.2022.07.007.
3
Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury.
Cell Stem Cell. 2022 Aug 4;29(8):1246-1261.e6. doi: 10.1016/j.stem.2022.06.013.
4
Lymphatics act as a signaling hub to regulate intestinal stem cell activity.
Cell Stem Cell. 2022 Jul 7;29(7):1067-1082.e18. doi: 10.1016/j.stem.2022.05.007. Epub 2022 Jun 20.
5
Lepr mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin-Igf1 axis.
Cell Res. 2022 Jul;32(7):670-686. doi: 10.1038/s41422-022-00643-9. Epub 2022 Mar 16.
6
Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing.
PLoS Biol. 2022 Jan 27;20(1):e3001532. doi: 10.1371/journal.pbio.3001532. eCollection 2022 Jan.
7
A FoxL1-CreERT-2A-tdTomato Mouse Labels Subepithelial Telocytes.
Cell Mol Gastroenterol Hepatol. 2021;12(3):1155-1158.e4. doi: 10.1016/j.jcmgh.2021.05.009. Epub 2021 May 23.
8
Twelve years of SAMtools and BCFtools.
Gigascience. 2021 Feb 16;10(2). doi: 10.1093/gigascience/giab008.
9
Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis.
PLoS Biol. 2020 Dec 11;18(12):e3001032. doi: 10.1371/journal.pbio.3001032. eCollection 2020 Dec.
10
The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis.
Gastroenterology. 2021 Mar;160(4):1224-1239.e30. doi: 10.1053/j.gastro.2020.11.011. Epub 2020 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验