Suppr超能文献

无锌、可扩展的还原型交叉亲电试剂偶联反应,由未分隔电池中的电化学驱动。

Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell.

作者信息

Franke Mareena C, Longley Victoria R, Rafiee Mohammad, Stahl Shannon S, Hansen Eric C, Weix Daniel J

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA.

Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 USA.

出版信息

ACS Catal. 2022 Oct 21;12(20):12617-12626. doi: 10.1021/acscatal.2c03033. Epub 2022 Oct 3.

Abstract

Nickel-catalyzed reductive cross-electrophile coupling reactions are becoming increasingly important in organic synthesis, but application at scale is limited by three interconnected challenges: a reliance on amide solvents (complicated workup, regulated), the generation of stoichiometric Zn salts (complicated isolation, waste disposal issue), and mixing/activation challenges of zinc powder. We show here an electrochemical approach that addresses these three issues: the reaction works in acetonitrile with diisopropylethylamine as the terminal reductant in a simple undivided cell (graphite(+)/nickel foam(-)). The reaction utilizes a combination of two ligands, 4,4'-di--butyl-2,2'-bipyridine and 4,4',4''-tri--butyl-2,2':6',2''-terpyridine. Studies show that, alone, the bipyridine nickel catalyst predominantly forms protodehalogenated aryl and aryl dimer, whereas the terpyridine nickel catalyst predominantly forms bialkyl and product. By combining these two unselective catalysts, a tunable, general system results because excess radical formed by the terpyridine catalyst can be converted to product by the bipyridine catalyst. As the aryl bromide becomes more electron rich, the optimal ratio shifts to have more of the bipyridine nickel catalyst. Lastly, examination of a variety of flow-cell configurations establishes that batch recirculation can achieve higher productivity (mmol product/time/electrode area) than single-pass, that high flow rates are essential to maximizing current, and that two flow cells in parallel can nearly halve the reaction time. The resulting reaction is demonstrated on gram scale and should be scalable to kilogram scale.

摘要

镍催化的还原交叉亲电偶联反应在有机合成中变得越来越重要,但规模化应用受到三个相互关联的挑战的限制:依赖酰胺溶剂(后处理复杂、受管制)、化学计量的锌盐生成(分离复杂、存在废物处理问题)以及锌粉的混合/活化挑战。我们在此展示了一种电化学方法,可解决这三个问题:该反应在乙腈中以二异丙基乙胺作为终端还原剂,在简单的无隔膜电解池中(石墨(+)/泡沫镍(-))进行。该反应使用了两种配体的组合,即4,4'-二叔丁基-2,2'-联吡啶和4,4',4''-三叔丁基-2,2':6',2''-三联吡啶。研究表明,单独的联吡啶镍催化剂主要形成脱卤芳基和芳基二聚体,而三联吡啶镍催化剂主要形成双烷基产物。通过将这两种非选择性催化剂组合,得到了一个可调谐的通用体系,因为三联吡啶催化剂形成的过量自由基可被联吡啶催化剂转化为产物。随着芳基溴电子云密度增加,最佳比例向含有更多联吡啶镍催化剂的方向移动。最后,对各种流动池配置的研究表明,间歇循环比单程流动能实现更高产率(毫摩尔产物/时间/电极面积),高流速对于使电流最大化至关重要,并且两个并联的流动池可使反应时间几乎减半。所得到的反应已在克级规模上得到证明,并且应该可扩大到千克级规模。

相似文献

1
Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell.
ACS Catal. 2022 Oct 21;12(20):12617-12626. doi: 10.1021/acscatal.2c03033. Epub 2022 Oct 3.
2
Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions.
Acc Chem Res. 2022 Dec 6;55(23):3430-3444. doi: 10.1021/acs.accounts.2c00496. Epub 2022 Nov 16.
3
Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules.
Acc Chem Res. 2023 Dec 19;56(24):3640-3653. doi: 10.1021/acs.accounts.3c00588. Epub 2023 Nov 30.
4
Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates.
Nature. 2015 Aug 27;524(7566):454-7. doi: 10.1038/nature14676. Epub 2015 Aug 17.
5
Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.
Acc Chem Res. 2015 Jun 16;48(6):1767-75. doi: 10.1021/acs.accounts.5b00057. Epub 2015 May 26.
6
Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis.
ACS Catal. 2019 Aug 2;9(8):6751-6754. doi: 10.1021/acscatal.9b01785. Epub 2019 Jul 25.
8
Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents.
Chemistry. 2016 Aug 8;22(33):11564-7. doi: 10.1002/chem.201602668. Epub 2016 Jul 8.
9
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
10
A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies.
ACS Catal. 2020 Nov 6;10(21):12642-12656. doi: 10.1021/acscatal.0c03237. Epub 2020 Sep 29.

引用本文的文献

1
Scaling Organic Electrosynthesis: The Crucial Interplay between Mechanism and Mass Transport.
ACS Cent Sci. 2025 Feb 11;11(4):528-538. doi: 10.1021/acscentsci.4c01733. eCollection 2025 Apr 23.
2
Translation of Nickel-Catalyzed C(sp)-C(sp) Cross-Electrophile Coupling to Non-Amide Solvents.
Org Lett. 2025 Apr 25;27(16):4310-4315. doi: 10.1021/acs.orglett.5c01011. Epub 2025 Apr 14.
3
Development status of electrocatalytic hydrogenation of biomass small molecules and prospects for industrial production.
iScience. 2025 Jan 27;28(2):111908. doi: 10.1016/j.isci.2025.111908. eCollection 2025 Feb 21.
4
Borohydride Oxidation as Counter Reaction in Reductive Electrosynthesis.
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202501653. doi: 10.1002/anie.202501653. Epub 2025 Apr 3.
5
Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.
J Am Chem Soc. 2025 Jan 29;147(4):3468-3477. doi: 10.1021/jacs.4c14767. Epub 2025 Jan 14.
6
The Future of Electro-organic Synthesis in Drug Discovery and Early Development.
ACS Org Inorg Au. 2024 Nov 16;4(6):571-578. doi: 10.1021/acsorginorgau.4c00068. eCollection 2024 Dec 4.
7
Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis.
Chem Rev. 2024 Dec 11;124(23):13397-13569. doi: 10.1021/acs.chemrev.4c00524. Epub 2024 Nov 26.
8
Non-Innocent Role of Sacrificial Anodes in Electrochemical Nickel-Catalyzed C(sp)-C(sp) Cross-Electrophile Coupling.
J Am Chem Soc. 2024 Nov 27;146(47):32249-32254. doi: 10.1021/jacs.4c10979. Epub 2024 Nov 15.
9
Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling.
Nat Chem. 2024 Dec;16(12):2036-2043. doi: 10.1038/s41557-024-01627-5. Epub 2024 Sep 6.
10
Sacrificial Anode-Free Electrochemical Cross-Electrophile Coupling of 1,3-Diol Derivatives to Form Aliphatic and Aryl Cyclopropanes.
Org Lett. 2024 Aug 9;26(31):6556-6561. doi: 10.1021/acs.orglett.4c02022. Epub 2024 Jul 31.

本文引用的文献

1
The application of modern reactions in large-scale synthesis.
Nat Rev Chem. 2021 Aug;5(8):546-563. doi: 10.1038/s41570-021-00288-z. Epub 2021 Jun 22.
2
Synergistic Catalyst-Mediator Pairings for Electroreductive Cross-Electrophile Coupling Reactions.
ACS Catal. 2022 Jan 21;12(2):1161-1166. doi: 10.1021/acscatal.1c05144. Epub 2022 Jan 5.
3
Overcoming Limitations in Decarboxylative Arylation via Ag-Ni Electrocatalysis.
J Am Chem Soc. 2022 Sep 28;144(38):17709-17720. doi: 10.1021/jacs.2c08006. Epub 2022 Sep 15.
5
Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations.
J Org Chem. 2022 Jun 17;87(12):7589-7609. doi: 10.1021/acs.joc.2c00462. Epub 2022 Jun 7.
6
Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis.
Org Process Res Dev. 2021 Aug 20;25(8):1966-1973. doi: 10.1021/acs.oprd.1c00208. Epub 2021 Jul 26.
7
Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling.
Science. 2022 Apr 22;376(6591):410-416. doi: 10.1126/science.abo0039. Epub 2022 Apr 21.
8
Modular terpene synthesis enabled by mild electrochemical couplings.
Science. 2022 Feb 18;375(6582):745-752. doi: 10.1126/science.abn1395. Epub 2022 Feb 17.
9
Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.
J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.
10
Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis.
Chem Rev. 2022 Jan 26;122(2):1485-1542. doi: 10.1021/acs.chemrev.1c00383. Epub 2021 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验