Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
Plant Physiol. 2023 Aug 31;193(1):304-321. doi: 10.1093/plphys/kiad287.
As a fundamental metabolic pathway, autophagy plays important roles in plant growth and development, particularly under stress conditions. A set of autophagy-related (ATG) proteins is recruited for the formation of a double-membrane autophagosome. Among them, the essential roles of ATG2, ATG18, and ATG9 have been well established in plant autophagy via genetic analysis; however, the underlying molecular mechanism for ATG2 in plant autophagosome formation remains poorly understood. In this study, we focused on the specific role of ATG2 in the trafficking of ATG18a and ATG9 during autophagy in Arabidopsis (Arabidopsis thaliana). Under normal conditions, YFP-ATG18a proteins are partially localized on late endosomes and translocated to ATG8e-labeled autophagosomes upon autophagic induction. Real-time imaging analysis revealed sequential recruitment of ATG18a on the phagophore membrane, showing that ATG18a specifically decorated the closing edges and finally disassociated from the completed autophagosome. However, in the absence of ATG2, most of the YFP-ATG18a proteins are arrested on autophagosomal membranes. Ultrastructural and 3D tomography analysis showed that unclosed autophagosome structures are accumulated in the atg2 mutant, displaying direct connections with the endoplasmic reticulum membrane and vesicular structures. Dynamic analysis of ATG9 vesicles suggested that ATG2 depletion also affects the association between ATG9 vesicles and the autophagosomal membrane. Furthermore, using interaction and recruitment analysis, we mapped the interaction relationship between ATG2 and ATG18a, implying a possible role of ATG18a in recruiting ATG2 and ATG9 to the membrane. Our findings unveil a specific role of ATG2 in coordinating ATG18a and ATG9 trafficking to mediate autophagosome closure in Arabidopsis.
自噬作为一种基本的代谢途径,在植物的生长和发育中发挥着重要作用,尤其是在胁迫条件下。一组自噬相关(ATG)蛋白被招募形成双层自噬体。其中,通过遗传分析,ATG2、ATG18 和 ATG9 在植物自噬中的基本作用已得到很好的证实;然而,ATG2 在植物自噬体形成中的潜在分子机制仍知之甚少。在这项研究中,我们专注于 ATG2 在拟南芥(Arabidopsis thaliana)自噬过程中 ATG18a 和 ATG9 运输中的特定作用。在正常条件下,YFP-ATG18a 蛋白部分定位于晚期内体上,并在自噬诱导时易位到 ATG8e 标记的自噬体上。实时成像分析显示 ATG18a 在吞噬体膜上的顺序招募,表明 ATG18a 特异性地装饰了闭合边缘,最后从完成的自噬体上解离。然而,在没有 ATG2 的情况下,大多数 YFP-ATG18a 蛋白被截留在自噬体膜上。超微结构和 3D 断层扫描分析显示,在 atg2 突变体中积累了未闭合的自噬体结构,与内质网膜和囊泡结构直接相连。ATG9 囊泡的动态分析表明,ATG2 耗尽也会影响 ATG9 囊泡与自噬体膜的结合。此外,通过相互作用和招募分析,我们绘制了 ATG2 和 ATG18a 之间的相互作用关系,暗示 ATG18a 可能在招募 ATG2 和 ATG9 到膜上发挥作用。我们的研究结果揭示了 ATG2 在协调 ATG18a 和 ATG9 运输以介导拟南芥自噬体闭合中的特定作用。