Suppr超能文献

混合人群中跨血统遗传结构对 GWAS 的影响。

Impact of cross-ancestry genetic architecture on GWASs in admixed populations.

机构信息

Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Am J Hum Genet. 2023 Jun 1;110(6):927-939. doi: 10.1016/j.ajhg.2023.05.001. Epub 2023 May 23.

Abstract

Genome-wide association studies (GWASs) have identified thousands of variants for disease risk. These studies have predominantly been conducted in individuals of European ancestries, which raises questions about their transferability to individuals of other ancestries. Of particular interest are admixed populations, usually defined as populations with recent ancestry from two or more continental sources. Admixed genomes contain segments of distinct ancestries that vary in composition across individuals in the population, allowing for the same allele to induce risk for disease on different ancestral backgrounds. This mosaicism raises unique challenges for GWASs in admixed populations, such as the need to correctly adjust for population stratification. In this work we quantify the impact of differences in estimated allelic effect sizes for risk variants between ancestry backgrounds on association statistics. Specifically, while the possibility of estimated allelic effect-size heterogeneity by ancestry (HetLanc) can be modeled when performing a GWAS in admixed populations, the extent of HetLanc needed to overcome the penalty from an additional degree of freedom in the association statistic has not been thoroughly quantified. Using extensive simulations of admixed genotypes and phenotypes, we find that controlling for and conditioning effect sizes on local ancestry can reduce statistical power by up to 72%. This finding is especially pronounced in the presence of allele frequency differentiation. We replicate simulation results using 4,327 African-European admixed genomes from the UK Biobank for 12 traits to find that for most significant SNPs, HetLanc is not large enough for GWASs to benefit from modeling heterogeneity in this way.

摘要

全基因组关联研究(GWAS)已经确定了数千种与疾病风险相关的变异。这些研究主要在欧洲血统的个体中进行,这引发了关于它们是否可以推广到其他血统个体的问题。特别引人关注的是混合人群,通常定义为最近有两个或更多大陆来源祖先的人群。混合基因组包含不同祖先的片段,这些片段在人群中的个体之间的组成上有所不同,这使得相同的等位基因在不同的祖先背景下可能导致疾病风险。这种镶嵌现象给混合人群中的 GWAS 带来了独特的挑战,例如需要正确调整群体分层。在这项工作中,我们量化了风险变异等位基因效应大小在不同祖先背景下的差异对关联统计数据的影响。具体来说,虽然在混合人群中进行 GWAS 时可以模拟估计的等位基因效应大小的遗传异质性(HetLanc),但需要克服关联统计中额外自由度惩罚的 HetLanc 程度尚未得到彻底量化。通过对混合基因型和表型进行广泛的模拟,我们发现,控制和调节局部祖先的效应大小可以使统计效力降低高达 72%。在等位基因频率分化存在的情况下,这一发现尤为明显。我们使用来自英国生物库的 4327 个非洲-欧洲混合基因组复制了模拟结果,以 12 种特征,发现对于大多数显著的 SNP,HetLanc 不足以使 GWAS 从这种方式的异质性建模中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8180/10257009/c595c506bcf2/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验