Suppr超能文献

建立和验证脓毒症相关性急性肾损伤危重症患者的预后模型:可解释的机器学习方法。

Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.

机构信息

Department of Emergency, Hangzhou First People's Hospital Affiliated to Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.

Department of Ultrasound, The First Affiliated Hospital Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.

出版信息

J Transl Med. 2023 Jun 22;21(1):406. doi: 10.1186/s12967-023-04205-4.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a common complication in critically ill patients with sepsis and is often associated with a poor prognosis. We aimed to construct and validate an interpretable prognostic prediction model for patients with sepsis-associated AKI (S-AKI) using machine learning (ML) methods.

METHODS

Data on the training cohort were collected from the Medical Information Mart for Intensive Care IV database version 2.2 to build the model, and data of patients were extracted from Hangzhou First People's Hospital Affiliated to Zhejiang University School of Medicine for external validation of model. Predictors of mortality were identified using Recursive Feature Elimination (RFE). Then, random forest, extreme gradient boosting (XGBoost), multilayer perceptron classifier, support vector classifier, and logistic regression were used to establish a prognosis prediction model for 7, 14, and 28 days after intensive care unit (ICU) admission, respectively. Prediction performance was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) were used to interpret the ML models.

RESULTS

In total, 2599 patients with S-AKI were included in the analysis. Forty variables were selected for the model development. According to the areas under the ROC curve (AUC) and DCA results for the training cohort, XGBoost model exhibited excellent performance with F1 Score of 0.847, 0.715, 0.765 and AUC (95% CI) of 0.91 (0.90, 0.92), 0.78 (0.76, 0.80), and 0.83 (0.81, 0.85) in 7 days, 14 days and 28 days group, respectively. It also demonstrated excellent discrimination in the external validation cohort. Its AUC (95% CI) was 0.81 (0.79, 0.83), 0.75 (0.73, 0.77), 0.79 (0.77, 0.81) in 7 days, 14 days and 28 days group, respectively. SHAP-based summary plot and force plot were used to interpret the XGBoost model globally and locally.

CONCLUSIONS

ML is a reliable tool for predicting the prognosis of patients with S-AKI. SHAP methods were used to explain intrinsic information of the XGBoost model, which may prove clinically useful and help clinicians tailor precise management.

摘要

背景

急性肾损伤(AKI)是脓毒症危重症患者常见的并发症,常与预后不良相关。本研究旨在使用机器学习(ML)方法构建和验证脓毒症相关急性肾损伤(S-AKI)患者的可解释预后预测模型。

方法

使用 Medical Information Mart for Intensive Care IV 数据库版本 2.2 中的数据构建模型,使用浙江大学医学院附属杭州市第一人民医院的数据对模型进行外部验证。使用递归特征消除(RFE)来识别死亡率预测因子。然后,使用随机森林、极端梯度提升(XGBoost)、多层感知机分类器、支持向量分类器和逻辑回归分别建立 ICU 入院后 7、14 和 28 天的预后预测模型。使用接收者操作特征(ROC)曲线和决策曲线分析(DCA)评估预测性能。使用 SHapley Additive exPlanations(SHAP)方法解释 ML 模型。

结果

共纳入 2599 例 S-AKI 患者进行分析。为模型开发选择了 40 个变量。根据训练队列的 ROC 曲线下面积(AUC)和 DCA 结果,XGBoost 模型在 F1 评分 0.847、0.715、0.765 和 AUC(95%CI)0.91(0.90,0.92)、0.78(0.76,0.80)和 0.83(0.81,0.85)方面表现出优异的性能,分别在 7 天、14 天和 28 天组。在外部验证队列中也表现出出色的区分度。其 AUC(95%CI)分别为 0.81(0.79,0.83)、0.75(0.73,0.77)、0.79(0.77,0.81)在 7 天、14 天和 28 天组。使用基于 SHAP 的汇总图和力图全局和局部解释 XGBoost 模型。

结论

ML 是预测 S-AKI 患者预后的可靠工具。SHAP 方法用于解释 XGBoost 模型的内在信息,这可能具有临床意义,并帮助临床医生制定精确的管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497c/10286378/99480e89ecbd/12967_2023_4205_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验