Suppr超能文献

基于类别的噬菌体与抗生素协同与拮抗作用

Class-Driven Synergy and Antagonism between a Pseudomonas Phage and Antibiotics.

机构信息

Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.

TAILΦR LABS, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Infect Immun. 2023 Aug 16;91(8):e0006523. doi: 10.1128/iai.00065-23. Epub 2023 Jul 5.

Abstract

The ubiquitous bacterial pathogen Pseudomonas aeruginosa is responsible for severe infections in patients with burns, cystic fibrosis, and neutropenia. Biofilm formation gives physical refuge and a protected microenvironment for sessile cells, rendering cure by antibiotics a challenge. Bacteriophages have evolved to prey on these biofilms over millions of years, using hydrolases and depolymerases to penetrate biofilms and reach cellular targets. Here, we assessed how a newly discovered KMV-like phage (ΦJB10) interacts with antibiotics to treat P. aeruginosa more effectively in both planktonic and biofilm forms. By testing representatives of four classes of antibiotics (cephalosporins, aminoglycosides, fluoroquinolones, and carbapenems), we demonstrated class-dependent interactions between ΦJB10 and antibiotics in both biofilm clearance and P. aeruginosa killing. Despite identifying antagonism between some antibiotic classes and ΦJB10 at early time points, all classes showed neutral to favorable interactions with the phage at later time points. In one notable example where the antibiotic alone had poor activity against both biofilm and high-density planktonic cells, we found that addition of ΦJB10 demonstrated synergy and resulted in effective treatment of both. Further, ΦJB10 seemed to act as an adjuvant to several antibiotics, reducing the concentration of antibiotics required to ablate the biofilm. This report shows that phages such as ΦJB10 may be valuable additions to the armamentarium against difficult-to-treat biofilm-based infections.

摘要

无处不在的细菌病原体铜绿假单胞菌是导致烧伤、囊性纤维化和中性粒细胞减少症患者严重感染的罪魁祸首。生物膜的形成赋予了浮游细胞物理避难所和受保护的微环境,使抗生素治疗成为一项挑战。噬菌体经过数百万年的进化,利用水解酶和解聚酶来穿透生物膜并到达细胞靶标,从而专门捕食这些生物膜。在这里,我们评估了一种新发现的 KMV 样噬菌体 (ΦJB10) 如何与抗生素相互作用,以更有效地治疗浮游和生物膜形式的铜绿假单胞菌。通过测试四类抗生素(头孢菌素类、氨基糖苷类、氟喹诺酮类和碳青霉烯类)的代表,我们证明了 ΦJB10 与抗生素之间在生物膜清除和铜绿假单胞菌杀伤方面存在依赖于类别的相互作用。尽管在早期时间点发现某些抗生素类与 ΦJB10 之间存在拮抗作用,但在后期时间点,所有类均表现出与噬菌体的中性至有利相互作用。在一个值得注意的例子中,单独使用抗生素对生物膜和高密度浮游细胞的活性都很差,我们发现添加 ΦJB10 表现出协同作用,从而有效地治疗了这两种情况。此外,ΦJB10 似乎对几种抗生素起到了佐剂作用,降低了消除生物膜所需的抗生素浓度。本报告表明,像 ΦJB10 这样的噬菌体可能是对抗难以治疗的生物膜感染的宝贵武器。

相似文献

1
Class-Driven Synergy and Antagonism between a Pseudomonas Phage and Antibiotics.
Infect Immun. 2023 Aug 16;91(8):e0006523. doi: 10.1128/iai.00065-23. Epub 2023 Jul 5.
3
Phage-antibiotic combinations against multidrug-resistant in static and dynamic biofilm models.
Antimicrob Agents Chemother. 2023 Nov 15;67(11):e0057823. doi: 10.1128/aac.00578-23. Epub 2023 Oct 19.
4
Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential.
Microbiol Spectr. 2023 Jun 15;11(3):e0463622. doi: 10.1128/spectrum.04636-22. Epub 2023 May 1.
6
Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms.
PLoS One. 2017 Jan 11;12(1):e0168615. doi: 10.1371/journal.pone.0168615. eCollection 2017.
7
Exploiting phage-antibiotic synergies to disrupt PAO1 biofilms in the context of orthopedic infections.
Microbiol Spectr. 2024 Jan 11;12(1):e0321923. doi: 10.1128/spectrum.03219-23. Epub 2023 Dec 12.
8
Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections.
J Control Release. 2023 Dec;364:159-173. doi: 10.1016/j.jconrel.2023.10.029. Epub 2023 Oct 31.
9
Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis.
Cochrane Database Syst Rev. 2020 Jun 10;6(6):CD009528. doi: 10.1002/14651858.CD009528.pub5.
10
Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis.
Cochrane Database Syst Rev. 2017 Oct 5;10(10):CD009528. doi: 10.1002/14651858.CD009528.pub4.

引用本文的文献

1
Natural products influence bacteriophage infectivity.
Nat Prod Rep. 2025 Aug 18. doi: 10.1039/d5np00014a.
2
Phage-Antibiotic Combinations for Pseudomonas: Successes in the Clinic and In Vitro Tenuously Connected.
Microb Biotechnol. 2025 Jul;18(7):e70193. doi: 10.1111/1751-7915.70193.
3
The Current Landscape of Phage-Antibiotic Synergistic (PAS) Interactions.
Antibiotics (Basel). 2025 May 27;14(6):545. doi: 10.3390/antibiotics14060545.
4
Unlocking Enhanced Efficacy of Aminoglycoside Antibiotics Against Pseudomonas aeruginosa.
Microb Biotechnol. 2025 Jun;18(6):e70174. doi: 10.1111/1751-7915.70174.
5
One-Two Punch: Phage-Antibiotic Synergy Observed against by Combining Pleurotin and Phage K.
ACS Omega. 2025 Mar 18;10(12):12026-12036. doi: 10.1021/acsomega.4c09831. eCollection 2025 Apr 1.
6
Phage-antibiotic combinations against : impact of methodological approaches on effect evaluation.
Front Microbiol. 2025 Mar 12;16:1530819. doi: 10.3389/fmicb.2025.1530819. eCollection 2025.
8
A Case of Persistent Intra-Abdominal Infection Despite Bacteriophage Therapy.
Phage (New Rochelle). 2024 Sep 16;5(3):120-125. doi: 10.1089/phage.2023.0034. eCollection 2024 Sep.
9
10
Synergistic removal of biofilms by using a combination of phage with the exopolysaccharide depolymerase Dpo7.
Front Microbiol. 2024 Aug 7;15:1438022. doi: 10.3389/fmicb.2024.1438022. eCollection 2024.

本文引用的文献

1
Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle.
mBio. 2022 Jun 28;13(3):e0078322. doi: 10.1128/mbio.00783-22. Epub 2022 May 4.
2
Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far.
J Biomed Sci. 2022 Mar 30;29(1):23. doi: 10.1186/s12929-022-00806-1.
3
Retraction: Isolation and Characterization of a "phiKMV-Like" Bacteriophage and Its Therapeutic Effect on Mink Hemorrhagic Pneumonia.
PLoS One. 2022 Jan 20;17(1):e0263042. doi: 10.1371/journal.pone.0263042. eCollection 2022.
6
Protein Sequence Analysis Using the MPI Bioinformatics Toolkit.
Curr Protoc Bioinformatics. 2020 Dec;72(1):e108. doi: 10.1002/cpbi.108.
10
Phage Therapy in Poland - a Centennial Journey to the First Ethically Approved Treatment Facility in Europe.
Front Microbiol. 2020 Jun 5;11:1056. doi: 10.3389/fmicb.2020.01056. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验