Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
Computer and Mathematical Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.
Nat Methods. 2023 Nov;20(11):1661-1665. doi: 10.1038/s41592-023-02018-3. Epub 2023 Sep 21.
Sequence comparison tools for metagenome-assembled genomes (MAGs) struggle with high-volume or low-quality data. We present skani ( https://github.com/bluenote-1577/skani ), a method for determining average nucleotide identity (ANI) via sparse approximate alignments. skani outperforms FastANI in accuracy and speed (>20× faster) for fragmented, incomplete MAGs. skani can query genomes against >65,000 prokaryotic genomes in seconds and 6 GB memory. skani unlocks higher-resolution insights for extensive, noisy metagenomic datasets.
用于宏基因组组装基因组(MAG)的序列比较工具在处理大容量或低质量数据时存在困难。我们提出了 skani(https://github.com/bluenote-1577/skani),这是一种通过稀疏近似比对来确定平均核苷酸同一性(ANI)的方法。对于碎片化、不完整的 MAG,skani 在准确性和速度(快 20 倍以上)方面优于 FastANI。skani 可以在几秒钟内使用 6GB 内存查询超过 65,000 个原核基因组,以秒为单位。skani 为广泛、嘈杂的宏基因组数据集解锁了更高分辨率的见解。