Suppr超能文献

利用[植物名称]的愈伤组织和毛状根培养物生物合成功能性银纳米颗粒

Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of .

作者信息

Yugay Yulia A, Sorokina Maria R, Grigorchuk Valeria P, Rusapetova Tatiana V, Silant'ev Vladimir E, Egorova Anna E, Adedibu Peter A, Kudinova Olesya D, Vasyutkina Elena A, Ivanov Vladimir V, Karabtsov Alexander A, Mashtalyar Dmitriy V, Degtyarenko Anton I, Grishchenko Olga V, Kumeiko Vadim V, Bulgakov Victor P, Shkryl Yury N

机构信息

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.

Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia.

出版信息

J Funct Biomater. 2023 Sep 1;14(9):451. doi: 10.3390/jfb14090451.

Abstract

This study delves into the novel utilization of cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including , , , and . These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.

摘要

本研究深入探讨了利用培养细胞合成细胞外银纳米颗粒(AgNP)的新方法,无需添加其他物质。通过能量色散X射线光谱法已证实了元素银的存在,而紫外可见光谱则揭示了明显的表面等离子体共振峰。透射电子显微镜和扫描电子显微镜表明,尺寸在10至40纳米之间的AgNP呈现出球形形态。傅里叶变换红外分析证实了提取物成分能够作为金属离子的还原剂和封端剂。在对胚胎成纤维细胞(NIH 3T3)和小鼠神经母细胞瘤(N2A)细胞的细胞毒性方面,AgNP表现出不同的效果。具体而言,源自愈伤组织培养物的纳米颗粒表现出2.8 µg/mL的半数抑制浓度(IC),有效抑制了N2A的生长,而源自毛状根的AgNP仅在浓度达到50 µg/mL及以上时才达到此效果。值得注意的是,所有研究的AgNP处理均在成纤维细胞中诱导了细胞毒性,产生的IC值范围为7.2至36.3 µg/mL。此外,研究结果揭示了合成的AgNP对影响动植物的病原微生物的有效性,包括 、 、 和 。这些发现强调了生物技术方法在提供先进且增强的绿色纳米技术替代方案以生产用于对抗癌症和感染性疾病的纳米颗粒方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46bd/10532211/7b481ba867f3/jfb-14-00451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验