Suppr超能文献

限制异亮氨酸饮食可延长遗传异质性小鼠的健康寿命和寿命。

Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice.

机构信息

Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.

Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Cell Metab. 2023 Nov 7;35(11):1976-1995.e6. doi: 10.1016/j.cmet.2023.10.005.

Abstract

Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.

摘要

低蛋白饮食促进了多种物种的健康和长寿。限制支链氨基酸(BCAAs)亮氨酸、异亮氨酸和缬氨酸可以在年轻的 C57BL/6J 小鼠中重现许多这些益处。限制饮食中的异亮氨酸(IleR)足以促进代谢健康,并且是 C57BL/6J 雄性低蛋白饮食许多益处所必需的。在这里,我们测试了这样一个假设,即 IleR 将促进遗传异质的成年 UM-HET3 小鼠的健康衰老。我们发现 IleR 改善了年轻和年老 HET3 小鼠的代谢健康,促进了两性的苗条和血糖控制,并以性别特异性的方式重塑了肝脏代谢。IleR 减少了虚弱,并延长了雌雄小鼠的寿命,但在雄性中更为明显。我们的结果表明,IleR 增加了遗传多样化小鼠的健康寿命和寿命,并表明 IleR 或模仿这种效果的药物可能具有作为抗衰老干预的潜力。

相似文献

1
Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice.
Cell Metab. 2023 Nov 7;35(11):1976-1995.e6. doi: 10.1016/j.cmet.2023.10.005.
2
Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice.
Nat Aging. 2021 Jan;1(1):73-86. doi: 10.1038/s43587-020-00006-2. Epub 2021 Jan 14.
3
Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism.
Aging Cell. 2022 Jun;21(6):e13626. doi: 10.1111/acel.13626. Epub 2022 May 8.
4
The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine.
Cell Metab. 2021 May 4;33(5):905-922.e6. doi: 10.1016/j.cmet.2021.03.025. Epub 2021 Apr 21.
5
Restoration of metabolic health by decreased consumption of branched-chain amino acids.
J Physiol. 2018 Feb 15;596(4):623-645. doi: 10.1113/JP275075. Epub 2017 Dec 27.
6
Late-life isoleucine restriction promotes physiological and molecular signatures of healthy aging.
bioRxiv. 2024 Jan 9:2023.02.06.527311. doi: 10.1101/2023.02.06.527311.
7
Quantification of healthspan in aging mice: introducing FAMY and GRAIL.
Geroscience. 2024 Oct;46(5):4203-4215. doi: 10.1007/s11357-024-01200-5. Epub 2024 May 17.
9
The regulation of healthspan and lifespan by dietary amino acids.
Transl Med Aging. 2021;5:17-30. doi: 10.1016/j.tma.2021.05.001. Epub 2021 May 24.
10
Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice.
Metabolism. 2014 Jun;63(6):841-50. doi: 10.1016/j.metabol.2014.03.006. Epub 2014 Mar 15.

引用本文的文献

1
Metabolic regulation of immunological aging.
Nat Aging. 2025 Aug;5(8):1425-1440. doi: 10.1038/s43587-025-00921-2. Epub 2025 Aug 14.
3
HEALTHY AGING: THE PROMISE, AND PERILS, OF GEROSCIENCE.
Trans Am Clin Climatol Assoc. 2025;135:99-118.
4
Nutrition and Aging Biology: Summary of a Research Centers Collaborative Network Workshop and Research Needs.
Curr Dev Nutr. 2025 Jun 18;9(7):107485. doi: 10.1016/j.cdnut.2025.107485. eCollection 2025 Jul.
5
Relationship between amino acid metabolism and inflammation in coronary heart disease (Review).
Int J Mol Med. 2025 Aug;56(2). doi: 10.3892/ijmm.2025.5561. Epub 2025 Jun 6.
6
ameliorates fatty liver through microbiota-derived α-ketoisovaleric acid metabolism and hepatic PI3K/Akt signaling.
iScience. 2025 Apr 16;28(5):112458. doi: 10.1016/j.isci.2025.112458. eCollection 2025 May 16.
10
Dietary methionine restriction started late in life promotes healthy aging in a sex-specific manner.
Sci Adv. 2025 Apr 18;11(16):eads1532. doi: 10.1126/sciadv.ads1532. Epub 2025 Apr 16.

本文引用的文献

1
Complex heatmap visualization.
Imeta. 2022 Aug 1;1(3):e43. doi: 10.1002/imt2.43. eCollection 2022 Sep.
2
Higher dietary protein intake is associated with sarcopenia in older British twins.
Age Ageing. 2023 Feb 1;52(2). doi: 10.1093/ageing/afad018.
3
Insulin-regulated serine and lipid metabolism drive peripheral neuropathy.
Nature. 2023 Feb;614(7946):118-124. doi: 10.1038/s41586-022-05637-6. Epub 2023 Jan 25.
4
Nutritional Management of Sarcopenia and Frailty-Shift from Metabolic Syndrome to Frailty.
J Nutr Sci Vitaminol (Tokyo). 2022;68(Supplement):S67-S69. doi: 10.3177/jnsv.68.S67.
5
Multiomics assessment of dietary protein titration reveals altered hepatic glucose utilization.
Cell Rep. 2022 Aug 16;40(7):111187. doi: 10.1016/j.celrep.2022.111187.
7
Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Nat Commun. 2022 Apr 19;13(1):2025. doi: 10.1038/s41467-022-29714-6.
10
Caloric restriction in humans reveals immunometabolic regulators of health span.
Science. 2022 Feb 11;375(6581):671-677. doi: 10.1126/science.abg7292. Epub 2022 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验