Suppr超能文献

时间演变揭示侵袭性神经内分泌前列腺癌细胞转化的分支谱系。

Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation.

机构信息

Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.

Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA.

出版信息

Cancer Cell. 2023 Dec 11;41(12):2066-2082.e9. doi: 10.1016/j.ccell.2023.10.009. Epub 2023 Nov 22.

Abstract

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.

摘要

从腺癌向小细胞神经内分泌状态的转分化与多种癌症类型的治疗耐药性有关。为了深入了解转分化的潜在分子事件,我们对全小细胞神经内分泌癌模型(称为 PARCB)进行了多组学时间过程分析,这是一种使用人前列腺基底细胞进行的正向遗传转化,并在所有转化模型复制品中发现了一个共同的发育、弧形和高熵轨迹。进一步的单细胞分辨率映射显示,两个不同的谱系由 ASCL1 或 ASCL2 的相互排斥表达定义。通过跨发育阶段的转录因子组的时间调控揭示了细胞重编程先于神经元程序的诱导。TFAP4 和 ASCL1/2 反馈被确定为 ASCL1 和 ASCL2 表达的潜在调节剂。我们的研究提供了时间转录模式,并揭示了前列腺癌和肺癌之间的泛组织平行关系,以及与正常神经内分泌细胞状态的联系。

相似文献

1
Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation.
Cancer Cell. 2023 Dec 11;41(12):2066-2082.e9. doi: 10.1016/j.ccell.2023.10.009. Epub 2023 Nov 22.
3
ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14788-93. doi: 10.1073/pnas.1410419111. Epub 2014 Sep 29.
4
POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer.
Genes Dev. 2018 Jul 1;32(13-14):915-928. doi: 10.1101/gad.314815.118. Epub 2018 Jun 26.
5
ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer.
JCI Insight. 2024 Dec 6;9(23):e185952. doi: 10.1172/jci.insight.185952.
6
Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1.
Cancer Res. 2024 Nov 4;84(21):3522-3537. doi: 10.1158/0008-5472.CAN-24-1388.
10
Identification of Lineage-specific Transcriptional Factor-defined Molecular Subtypes in Small Cell Bladder Cancer.
Eur Urol. 2024 Jun;85(6):523-526. doi: 10.1016/j.eururo.2023.05.023. Epub 2023 Jun 27.

引用本文的文献

4
High cereblon expression in neuroendocrine cancer confers vulnerability to GSPT1 molecular glue degrader.
Exp Hematol Oncol. 2025 Jun 23;14(1):89. doi: 10.1186/s40164-025-00674-z.
5
Effective therapeutic targeting of tumor lineage plasticity in neuroendocrine prostate cancer by BRD4 inhibitors.
Acta Pharm Sin B. 2025 Mar;15(3):1415-1429. doi: 10.1016/j.apsb.2025.01.007. Epub 2025 Jan 22.
8
Challenges of small cell lung cancer heterogeneity and phenotypic plasticity.
Nat Rev Cancer. 2025 Apr 10. doi: 10.1038/s41568-025-00803-0.
9
CUL4B regulates thyroid cancer differentiation and treatment sensitivity by ubiquitinating ARID1A.
Transl Oncol. 2025 Jun;56:102389. doi: 10.1016/j.tranon.2025.102389. Epub 2025 Apr 11.

本文引用的文献

1
Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer.
Front Cell Dev Biol. 2023 Jan 12;11:1075707. doi: 10.3389/fcell.2023.1075707. eCollection 2023.
2
FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer.
Cancer Cell. 2022 Nov 14;40(11):1306-1323.e8. doi: 10.1016/j.ccell.2022.10.011. Epub 2022 Nov 3.
3
Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling.
Science. 2022 Sep 9;377(6611):1180-1191. doi: 10.1126/science.abn0478. Epub 2022 Aug 18.
4
Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets.
Science. 2022 May 27;376(6596):eabe1505. doi: 10.1126/science.abe1505.
6
Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer.
Nat Commun. 2021 Oct 1;12(1):5775. doi: 10.1038/s41467-021-26042-z.
7
Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory.
Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2109475118.
8
Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation.
STAR Protoc. 2021 Jun 16;2(3):100609. doi: 10.1016/j.xpro.2021.100609. eCollection 2021 Sep 17.
10
Transcriptional mediators of treatment resistance in lethal prostate cancer.
Nat Med. 2021 Mar;27(3):426-433. doi: 10.1038/s41591-021-01244-6. Epub 2021 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验